друг друга даже в том случае, если они будут непрерывны и не могут быть обращены вспять, потому что противоположности взаимно уничтожаются и препятствуют друг другу, но не движение вкось и движение вверх.
Но невозможность непрерывного движения по прямой уясняется больше всего из того, что [тело], поворачивающее назад, необходимо должно остановиться — не только если оно перемещается по прямой, но и по кругу. Ибо не одно и то же двигаться круговым движением и по кругу, так как в одном случае движение непрерывно продолжается, в другом [дви-ущееся], придя на то место, откуда начало двигаться, поворачивает назад. А что ему необходимо остановиться, в этом убеждает не только свидетельство чувств, но и рассуждение. Начало [этого рассуждения] таково. Так как существуют три [точки]: начало, середина и конец, середина по отношению к каждому [из отрезков] будет и тем и другим, [т. е. началом и концом] и, будучи по числу единой, по определению будет двумя. Далее, одно дело — существовать в возможности, другое — в деятельности; так что любая точка, лежащая на прямой между ее концами, в возможности есть середина, в деятельности же не будет ею, пока не разделит прямую и остановившееся на ней [тело] снова начнет двигаться. Таким образом середина становится началом и концом; началом для последующего [движения], концом для первого. Пусть, например, перемещающееся [тело] А останавливается в В и снова движется к Г. Когда оно движется непрерывно, А не может ни находиться в [точке] В, ни отправляться из нее, а может быть в ней лишь один момент «теперь» — не в течение какого-нибудь времени, а лишь поскольку «теперь» делит целое [время]. Если же предположить, что оно прибыло и ушло, [то это будет означать, что] движущееся А всегда будет стоять, так как невозможно, чтобы А одновременно прибыло в В и ушло оттуда; следовательно, это происходит в разные моменты времени. Следовательно, в промежутке будет какое-то время. Таким образом, [тело] А будет покоиться в [точке] В. То же относится и к другим точкам, так как подобное рассуждение приложимо ко всем [точкам]. Когда же движущееся [тело] А пользуется средней [точкой] В как концом и началом, ему необходимо остановиться, потому что оно делает [из одной точки] две, так же как это делает мышление. Но оно отправилось из точки А, как из начала, и оказалось в Г, когда закончило [движение] и остановилось.
То же надо сказать и по поводу трудности, которая заключается в следующем. Если линия Е будет равна линии Z и А будет двигаться непрерывно от крайней точки по направлению к Г и одновременно, когда А будет находиться в [точке] В, Д будет равномерно двигаться от крайней точки линии Z к точке Н со скоростью, равной скорости А, то Д, [по-видимому], раньше придет, в Н, чем А в Г, так как прежде двинувшееся и отошедшее должно прийти раньше. Таким образом, не одновременно А пришло в [точку] В и отошло от нее, потому и запаздывает. Ведь если бы это [произошло] одновременно, оно не запоздало бы, но [телу] А необходимо остановиться. Следовательно, нельзя так рассматривать вопрос, что, когда А пришло в [точку] В, Д одновременно совершало движение от края Z (ибо, если А пришло в В, оно и удалилось оттуда, а это [происходит] не одновременно); между тем оно было [в В] не в течение какого-то времени, а в точке разреза времени. Отсюда следует, что о непрерывном [движении] таким образом рассуждать нельзя; наоборот, о [движении], возвращающемся назад, необходимо рассуждать именно так. Ибо если тело Н перемещалось по направлению к Д, а затем, повернув назад, пошло вниз, то оно воспользовалось конечной точкой Д как концом и началом, т. е. одной точкой как двумя; поэтому ему пришлось остановиться. И не в одно и то же время [тело Н] пришло в Д и отошло от Д, иначе в одно и то же «теперь» оно там было и не было. Но указанного выше разрешения трудности здесь не следует применять, так как нельзя сказать, что Н находилось в Д как в точке разреза и, [следовательно], не приходило и не уходило: ведь [здесь] необходимо дойти до конца, существующего в действительности, а не только в возможности. Точка в середине [отрезка] существует в возможности, а эта [точка Д] в действительности, и она есть конец снизу и начало сверху; то же относится и к движению. Следовательно, необходимо, чтобы при поворачивании назад по прямой линии [тело] остановилось. Таким образом, непрерывное движение по прямой не может быть вечным.
Таким же способом следует возразить тем, которые выдвигают рассуждение Зенона и полагают, что если всегда сначала надо пройти половину, а число половин бесконечно, то бесконечного пройти нельзя; или тем, которые формулируют это же рассуждение иначе, утверждая, что вместе с движением надо отсчитывать половину каждой возникающей половины, так что, пройдя все расстояние, приходится сосчитать бесконечное число, а это, по общему признанию, невозможно.
В наших первых рассуждениях о движении мы разрешили [этот вопрос], исходя из того, что время заключает в себе бесконечное множество [частей]; ибо нет ничего нелепого, если в бесконечное время кто-нибудь пройдет бесконечное множество; ведь бесконечность одинаково присуща и длине и времени. Но такое решение достаточно для ответа тому, кто так поставил вопрос (спрашивалось ведь, можно ли в конечное [время] пройти или сосчитать бесконечно многое), однако для сути дела и для истины недостаточно. Если кто-нибудь оставит в стороне длину и вопрос о возможности пройти в конечное время бесконечное [множество] и попытается применить это [рассуждение] к самому времени (ведь время заключает в себе бесконечное множество делений), то приведенное решение уже не будет достаточным, но правильно будет сказать то именно, о чем мы говорили немного выше.
В самом деле, если кто-либо делит непрерывную [линию] на две половины, тот пользуется одной точкой как двумя, так как он делает [эту точку] началом и концом; так поступает и тот, кто считает, и тот, кто делит пополам. При таком делении ни линия, ни движение не будут непрерывными, так как непрерывное движение есть движение по непрерывному, а в непрерывном заключено бесконечное [число] половин, но только не в действительности, а в возможности. Если же их сделать действительными, то [движение] не будет непрерывным, но будет останавливаться, что вполне очевидно произойдет с тем, кто считает половины; ведь тогда необходимо одну точку считать за две: одна будет концом одной половины, другая — началом другой, если считать непрерывную [линию] не как одну, а как две половинные. Таким образом, на вопрос, можно ли пройти бесконечное число [частей] во времени или по длине, следует ответить, что в одном отношении можно, в другом нет. Если они будут существовать в действительности — нельзя, если в возможности — можно, так как [предмет], движущийся непрерывно, прошел бесконечное множество по совпадению, а не прямо, ибо наличие бесконечного числа половин в линии есть для нее побочное обстоятельство, а сущность ее и бытие иные.
Очевидно также, что если точку, делящую время на предшествующее и последующее, не делать всегда последующей в отношении того. что будет последующим для предмета, то одновременно одно и то же будет существовать и не существовать и нечто возникшее будет несуществующим. Точка эта, разумеется, является общей для того и другого, для предшествующего и для последующего, тождественной и единой по числу, но по определению она не тождественна (для одного она конец, для другого — начало), а для предмета она всегда принадлежит последующему состоянию. Пусть время будет АГВ, предмет — Д; он в течение всего времени А светлый, а в течение В несветлый; следовательно, в [момент времени] Г он и светлый и несветлый. Ведь будет правильно сказать, что в любой части времени А он светлый, если все это время он был светлым; точно так же во время В он не светлый, а в Г относится и к тому и к другому. Следовательно, нельзя считать, [что он светлый] во всем [промежутке времени А], но за исключением конечного момента «теперь» в точке Г. Этот момент относится уже к последующему [промежутку], и если [предмет] становится несветлым и исчезал как светлый в течение всего [промежутка] А, то окончательно стал или исчез в [момент] Г Таким образом, правильно называть [предмет] светлым и несветлым впервые в этот момент, иначе выйдет, что, когда он возник, [в это же мгновение] его уже не будет, или, когда исчез, останется, или же он должен быть одновременно светлым и несветлым и вообще существующим и несуществующим.
С другой стороны, если то, что существует, не будучи прежде, необходимо возникает, а когда возникает, его еще нет, то невозможно разделять время на неделимые [промежутки] времени. Ибо если в течение (промежутка) времени А [предмет] Д становился светлым, а стал и вместе с тем существует [как светлый] в другом неделимом [интервале] времени В и если в А он возникал и его еще не было [в качестве светлого предмета], а в В он уже существует, то в промежутке должно быть какое-то возникновение, а следовательно, и существовать время, в течение которого [это возникновение] происходило. Иное будет рассуждение у тех, кто не признает неделимых [величин], а утверждает, что в то самое время, когда [светлый предмет] возникал, он возник и существует в крайней точке, за которой нет ничего смежного или последующего, тогда как неделимые [интервалы] времени следуют друг за другом, — ясно, что, если возникновение происходило в течение всего времени А, нет больше времени, в течение которого [предмет] возник и возникал, кроме только всего того времени, в течение которого он возникал.
Такие и подобные им аргументы, как свойственные [рассматриваемому вопросу], могут считаться достаточно убедительными. Логическое рассмотрение приводит, по-видимому, к тому же результату исходя из следующих [соображений]. Именно, всякое непрерывно движущееся [тело], если оно ничем не отклоняется в сторону, в какую точку пришло в ходе своего перемещения, в ту оно и двигалось раньше, например если пришло в В, то и двигалось в В, и не тогда, когда находилось вблизи, а сразу, как только начало двигаться. Ибо почему в большей степени теперь, а не раньше? То же относится и ко всем прочим [видам движения]. [Предмет], движущийся от А [в направлении] к Г, когда он придет в Г, снова должен возвратиться в А, двигаясь непрерывно. Когда он, следовательно, движется от А к Г, тогда же движется и к А движением, исходящим от