Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Аналитическая философия. А.Л. Блинов, М.В.Лебедев

для возникших в XX веке многозначных логик). Для краткости одно он называет истинностью, а другое – ложностью. Фреге пишет: «Всякое повествовательно предложение, в зависимости от значения составляющих его слов, может, таким образом, рассматриваться как имя, значением которого, если, конечно, оно имеется, будет либо истина, либо ложь. Оба этих абстрактных предмета признаются, хотя бы молчаливо, всеми, кто вообще выносит хоть какие – либо суждения или считает хоть что нибудь истинным, то есть даже скептиком»[52 — Там же, с.32-33.].

Истинность и ложность рассматриваются Фреге как абстрактныепредметы. Такая трактовка истинности и ложности нашла себе широкое применение в современной математической логике. Так, при табличном построении исчисления высказываний функции этого исчисления обычно трактуются как определенные на области, состоящей из двух предметов – предмета «истина» и предмета «ложь», которые принимают значение также на этой области. Следует, однако, отметить, что современные последователи Фреге и, в частности, Черч, предпочитают говорить об истине и ложности как о постулированных, а не как о идеально существующих предметах. В этом они видят способ избежать далеко идущих следствий логическогореализма Фреге, согласно которому абстрактные предметы обладают специфическим модусом существования.

Если предложение имеет истинностное значение, то оно, в свою очередь, определяется мыслью, выраженной в данном предложении. Фреге пишет: «Истинностное значение (Wahrheitswert) является значением (Bedeutung) предложения, смыслом (Sinn) которого является мысль (Gedanke)»[53 — Там же, с.22.]. Соответственно, только смыслы предложений, которые могут быть истинными или ложными, являются мыслями. Предложения, выражающие приказы, вопросы, «восклицания, которыми выражаются чьи-то чувства», обладают смыслами, но эти смыслы не являются мыслями. Мысль является смыслом предложений, «в которых выражается сообщение или утверждение»[54 — Там же, с.55.].

Если значением предложения является его истинностное значение, то все предложения распадаются на два класса:

(1) на класс предложений, смысл которых определяет их истинностное значение «истинность», и

(2) на класс предложений, смысл которых определяет их истинностное значение «ложность».

Мысль есть смысл имени истинности или ложности. Истинное предложение – это имя истинности, а ложное предложение – это имя ложности. Можно понимать мысль, выраженную в некотором предложении, но не знать, каково определяемое ею истинностное значение.

Высказывая предложение, говорящие стремятся выразить не просто мысли, которые в них выражены, но претендуют на истинность высказывания. Но в предложении как имени истинности или ложности утверждения не содержится. Поэтому значение само по себе нас не интересует; однако и голая мысль, то есть смысл сам по себе, тоже не несет в себе нового знания. Нас интересует только соединение мысли и ее значения, т. е. истинностного значения. Согласно Фреге, переход от уровня смыслов (интерсубъективный уровень) к уровню значений (объективный уровень) осуществляется в суждении.

По поводу логической природы суждения Фреге утверждает: «Суждение (Urteil) есть для меня не голое постижение некоторой мысли, но признание ее истинности»[55 — Там же, с. 33, сноска 1.]. Пока предложение рассматривается просто как имя истины и лжи, в нем еще нет никакого утверждения. Оно появляется только в том случае, когда к предложению присоединяется указание на его истинность. В обычных языках и в языке науки высказываемое кем-либо предложение рассматривается как утверждение истины; утверждение истины в этом случае выражается самим фактом высказывания предложения.

Заметим еще раз, что мысль и истинностное значение – два совершенно разных элемента в отношении наименования; второе не является частью первого (так же, как, например, само Солнце не является частью мысли о Солнце). Поскольку истина и ложь – не смысл, но предметы, стало быть, характеристика предложения как истинного или ложного ничего не добавляет к содержащейся в нем мысли. Это отчетливо видно, когда мы сравниваем предложения “5 – простое число” и “Мысль, что 5 – простое число, истинна”. Второе предложение не содержит никакой информации сверх той, что может быть усвоена из первого, а значит, приписывание мысли истинностного значения – это отношение иного рода, чем отношение между функцией и аргументом, из которых состоит мысль. Функция и аргумент находятся на одном уровне, дополняя друг друга, они создают целостную мысль, которая может функционировать, даже если мы ничего не знаем о ее истинности. Вопрос об истине возникает только тогда, когда мы переходим к утверждению мысли.

С точки зрения Фреге, в структуре утвердительного предложения необходимо различать: 1) схватывание мысли – мышление; 2) признание истинности мысли – суждение; 3) демонстрация этого суждения – утверждение[56 — Фреге Г. Логические исследования. С.35.]. Первый этап соответствует усвоению содержания предложения. Признание истинности заключено в форме утвердительного предложения и соответствует переходу от содержания предложения к его истинностному значению. Необходимость разведения мысли и суждения обосновывается тем, что усвоение содержания предложения не связано однозначно с возможным признанием его истинным или ложным, тот же самый смысл может быть усвоен в форме вопроса. Более того, очень часто случается так, что между усвоением мысли и утверждением ее истинности лежит значительный промежуток времени, как, например, происходит в научных исследованиях. Признание истинности выражается в форме утвердительного предложения. При этом совсем не обязательно использовать словоистинный’. Даже в том случае, если это слово все же употребляется, собственно утверждающая сила принадлежит не ему, а форме утвердительного предложения.

В естественном языке различие между содержанием предложения и его утверждением скрыто самой формой выражения. В структуре повествовательного предложения нет ничего такого, что позволило бы отличить простую констатацию мысли от признания ее истинной. В естественном языке это противопоставление скрыто, в частности, тем обстоятельством, что отсутствует особый знак суждения, подобный ‘?’ и ‘!’. Однако выделение особой утвердительной силы, основанное на противопоставлении запроса и суждения, необходимо, как считает Фреге, ввести в формальный язык описания логических структур, в котором все различия должны быть явно артикулированы. Для этого он использует особый знак суждения ‘((’. Различая суждение и саму мысль, он пишет: «В простом равенстве еще нет утверждения; “2+3=5” только обозначает истинностное значение, не говоря о том, какое из двух. Кроме того, если я написал “(2+3=5)=(2=2)” и предполагается, что мы знаем, что 2=2 есть истина, я тем самым все еще не утверждал, что сумма 2 и 3 равна 5; скорее я только обозначил истинностное значение “2+3=5” означает то же самое, что и “2=2”. Нам, следовательно, требуется другой, особый знак, для того чтобы мы могли утверждать нечто как истинное. Для этой цели я предпосылаю знак ‘((’ имени истинностного значения, так что, например, в “(( 22=4” утверждается, что 2 в квадрате равно 4. Я отличаю суждение от мысли следующим образом: под суждением я понимаю признание истинности мысли»[57 — Frege G. Grundgesetze. S.9.].

Своеобразие формальной системы, созданной Фреге, состоит в том, что на ее языке можно выразить как предложения, высказанные с утвердительной силой, так и простую констатацию. В последнем случае немецкий логик использует знак ‘(’, который помещает перед предложением. Этот знак является составной частью знака суждения ‘((’, и только вертикальная черта превращает констатацию в признание истинным. Различие констатации и суждения позволяет избавиться от традиционной классификации суждений на положительные и отрицательные. С точки зрения Фреге, нет никакой специфической отрицательной силы, для формальной системы достаточен только знак утверждения. Отрицание не затрагивает акт суждения и интегрировано в формальную запись на уровне констатации, поскольку, как указывалось выше, отрицание представляет собой одноместную истинностно-истинностную функцию. Знак суждения служит для утверждения, что истинностным значением предложения является истина, но «нам не нужен специальный знак, для того чтобы объявить, что истинностным значением является ложь, поскольку мы обладаем знаком, посредством которого истинностное значение изменяется на противоположное; это также необходимо и по другим основаниям. Теперь я ставлю условием: значением функции ‘( (p’ будет ложь для каждого аргумента, для которого значением функции ‘( p’ будет истина; и будет истина для всех других аргументов. Соответственно, в ‘( (p’ мы имеем функцию, значением которой всегда является истинностное значение; это – понятие, под которое подпадет каждый объект, единственно за исключением истины… При принятых нами условиях ‘( ((22=5)’ есть истина; а потому: ‘( ((22=5)’, используя слова: ‘22=5 не есть истина’; или: ‘2 в квадрате не равно 5’»[58 — Ibid. S.10.]. Таким образом, отрицание относится не к форме выражения, как это имеет место в традиционной логике, которая различает утвердительные и отрицательные суждения, а к элементам, связанным с содержанием. Мысль, выраженная в предложении, в этом смысле нейтральна, как вообще нейтрален способ данности объектов, каковыми в данном случае выступают истина и ложь.

Инкорпорируя знак суждения в структуру выражения мысли, Фреге не рассматривает его как конструкцию, аналогичную перформативным выражениям типа ‘Я утверждаю…’, ‘Он утверждает…’ и т.п. Знак суждения, выражающий утвердительную силу, никогда не может быть включен в содержание предложения, поскольку, согласно Фреге, приписанное перформативу предложение имеет косвенное вхождение в выражение, и как таковое имеет смысл и значение, отличные от смысла и значения исходного предложения. Так, значением косвенного предложения, подчиненного перформативу, является не истина или ложь, а его обычный смысл. Поэтому немецкий логик говорит именно о форме утвердительного предложения, которая соответствует знаку ‘((’ в естественном языке. Поскольку признание истинным зависит исключительно от формы утвердительного предложения, постольку оно также не имеет никакого отношения к чувству субъективной уверенности, сопровождающему психологическое осуществление акта суждения. Признание истинным – объективный процесс, характеризующий форму выражения мысли.

Знак суждения по Фреге может рассматриваться как общий всем предложениям предикат, типа “Истинно, что p” или “Имеет место p”. Так как предложения рассматриваются как имена, последнее вполне оправданно, поскольку с точки зрения грамматики конструкция “(( p” представляет собой глагол, приписанный имени.

Введение знака суждения основано не только на соображениях, связанных с формой выражения мысли. Важную роль знак суждения играет в структуре вывода. В качестве элементов вывода, как считает Фреге, могут использоваться только такие предложения, которые высказаны с утвердительной силой (т.е. соответствующая им мысль должна быть признана истинной), поскольку вывод заключается в вынесении суждений, осуществляемом на основе уже вынесенных ранее суждений, согласно логическим законам. Каждая из посылок есть определенная мысль, признанная истинной; точно так же признается истинной определенная мысль в суждении, которое является заключением вывода. Последнее можно прояснить специальным случаем c правилом вывода modus ponens, которое Фреге в своем шрифте понятий рассматривает в качестве единственного способа получения следствий и которое иллюстрирует еще один аргумент в пользу введения в структуру вывода особой утвердительной силы, связанной с формой повествовательного предложения в естественном языке и знаком ‘((’ в символическом языке. С точки зрения последнего, выделение особой формы суждения позволяет предотвратить petitio principi, скрытое в форме условно-категорического умозаключения. В “Если p, то q; p. Следовательно, q” заключение уже присутствует в условной посылке. Однако если в это умозаключение

Скачать:PDFTXT

Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать, Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать бесплатно, Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать онлайн