Скачать:PDFTXT
Аналитическая философия. А.Л. Блинов, М.В.Лебедев

высказываясь об интуитивном смысле приведенной выше дефиниции, мы должны однако признать, что эта дефиниция удовлетворяет всем условиям, определенным в утверждениях (I)-(III), и в частности, как это доказал г.Тарский, что это единственная возможная в трехзначной системе дефиниция, выполняющая эти условия»[277 — Lukasiewicz J. Uwagi o aksjomacie Nicoda i o «dedukcji uogolniajacej» / Ks.PTF. Ss.366-382. 1932.].

Поскольку позже Лукасевич вернулся к проблематике модальной логики, то естественно считать, что первое ее изложение не удовлетворяло его. Новое изложение[278 — Lukasiewicz J.] A system of modal logic – «Journal of Computing Systems».– I, no.3, 1953. Pp.111-149.] [1953] модальной логики Лукасевич начинает с изложения условий, которым по его мнению должна удовлетворять такая логика:

(1) утверждается импликация CpMp;

(2) отбрасывается импликация CMpp;

(3) отбрасывается предложение Mp;

(4) утверждается импликация CLpp;

(5) отбрасывается импликация CpLp;

(6) отбрасывается предложение NLp;

(7) утверждается эквивалентность EMpNLNp;

(8) утверждается эквивалентность ELpNMNp.

Понятия «утверждения» и «отбрасывания» принадлежат системе и обозначаются соответственно «((» и «((«. Первое условие соответствует принципу Ab esse ad posse valet consequentia. Второе условие соответствует высказыванию A posse ad esse non valet consequentia. В третьем условии говорится, что не все выражения, начинающиеся с M утверждаются, поскольку в противном случае Mp было бы равносильно функции «verum от p», которая не является модальной функцией. Четвертое условие соответствует принципу Ab oportere ad esse valet consequentia. Пятое условие соответствует высказыванию Ab esse ad oportere non valet consequentia. В шестом условии говорится, что не все выражения, начинающиеся с NL являются утверждениями, поскольку в противном случае Lp было бы равносильно функции «falsum от p», которая не является функцией модальности. Последние два условия представляют очевидные связи между возможностью и необходимостью.

Лукасевич предлагает для «основной модальной логики» следующую совокупность формул в качестве аксиом: (A1) (( CpMp, (A2) ((CMpp, (A3) ((Mp, (A4) (( EMpMNNp с правилами замены по определению (Lx=NMNx), подстановки в утвержденное выражение, подстановки в отбрасываемое выражение (если а отбрасывается и а есть подстановка b, то b должно быть отброшено), отделения для утвержденных выражений и отделения для отбрасываемых выражений (если Cxy утверждено, а y – отброшено, то x также отброшено). С использованием знака необходимости (A1)-(A4) преобразуются в: (A5) (( CLpp, (A6) ((CpLp, (A7) ((NLp, (A8) (( ELpLNNp. Особенно важными по мнению Лукасевича являются аксиомы (A4) и (A8). Поскольку они весьма похожи, то возникает мысль, что они имеют в своем основании некий общий принцип, из которого их можно вывести. А это значит, что «основная модальная логика» не полна. Это допущение подтверждается тем фактом, что формулы MKpqMp, CMKpqMq (если возможна конъюнкция, то возможен каждый из ее членов), а также CLKpqLp, CLKpqLq (если необходима конъюнкция, то необходим каждый из ее членов) независимы от «основной модальной логики». Не выводимы из (A1)-(A4) (либо же из (A5)-(A8)) следующие законы, известные уже Аристотелю: (a) CCpqCMpMq, (b) CCpqCLpLq, (c) CLCpqCMpMq, (d) CLCpqCLpLq. Можно показать, что из (a) следует (c), а из (b) – (d). Поэтому следовало расширить «основную модальную логику», присоединяя к ее аксиомам формулы (a)-(d). Формулы (a) и (c) можно считать частными случаями закона экстенсиональности CEpqCfpfq («f» означает переменный функтор). Присоединяя (a) к (A1)-(A3) можно доказать (A4); аналогично присоединяя (c) к (A5)-(A7) можно доказать (A8). Однако обе конструкции Лукасевич считает недостаточно общими. Окончательная формулировка модальной системы основывается на упоминавшемся выше результате ученика Лукасевича – Мередита, утверждавшего, что L2 и закон экстенсиональности следуют из формулы CfpCfNpfq. Окончательно аксиоматика модальной логики у Лукасевича принимает следующий вид: ((CfpCfNpfq, ((CpMq, ((CMpp, ((Mp. L-система содержит исчисление высказываний L2, но не является двузначной. Лукасевич показал, что адекватной матрицей для L-системы является следующая четырехзначная матрица (1 является выделенным значением):

СС

11

22

33

44

ТN

MM

11

11

32

33

44

44

11

22

11

11

33

33

33

22

33

11

12

11

22

22

33

44

11

11

11

11

11

33

Из того факта, что существуют две опосредующие истину и ложь оценки (2 и 3) не следует делать вывод, что в системе модальной логики Лукасевича существуют два понятия возможности. Тем не менее в L-системе имеют место т.н. возможности-близнецы M и M1. Они неразличимы, когда выступают отдельно, но разнятся, когда входят в одну формулу, например, формулы MMp и M1M1p эквивалентны, а формулы M1Mp и MM1p неэквивалентны. Этот факт в системе модальной логики Лукасевича не имеет интуитивной интерпретации. Четырехзначная матрица вообще изменила взгляд Лукасевича на значение многозначных логик: если раньше он считал, что выбор следует делать между трехзначной логикой или бесконечнозначной, то теперь он признал четырехзначную систему адекватной для выражения понятия возможности.

Некоторые неясные вопросы Лукасевич пытается выяснить путем сравнения с другими модальными системами, в частности, с системой фон Вригта, а не более известными системами Льюиса, поскольку они основываются на т.н. «строгой импликации», которая более сильна, нежели «материальная импликация», используемая Лукасевичем. Он подвергает сомнению т.н. правило необходимости: если x является формулой системы, то Lx – также формула. Лукасевич считает, что предложение является непосредственно ложным или истинным и не видит причины, по которой тавтология должна быть «более истинной», чем «обычное» истинное предложение, а контрадикторное предложение «более ложно», чем «обычная» ложь. В этой позиции чувствуется влияние Твардовского, подкрепленное взглядами Лесьневского. Лукасевич спрашивает: «Почему мы должны вводить необходимость и невозможность в логику, если не существуют истинные аподиктические предложения? На этот упрек я отвечаю, что прежде всего мы интересуемся проблематическими предложениями вида Mx и MNx, которые могут быть истинны и используемы, хотя их аргументы и отбрасываются, а вводя проблематические предложения мы не можем обойти их отрицания, т.е. аподиктических предложений ибо предложения, обоих видов неразрывно между собой связаны».(S.295) Важной для понимания Лукасевичем понятия возможности является формула CKMpMqMKpq, не имеющая места в системе Льюиса. Лукасевич рассматривает следующий пример:

Пусть n будет целым положительным числом. Я утверждаю, что следующая импликация истинна для всех значений n: Если возможно, что n четно, и возможно, что n нечетно, то возможно, что n четно и n нечетно». Если n=4, то истинно, что n может быть четно, но не может быть истинной, что n может не быть четным; если n есть 5, то истинно, что n может быть нечетным, но не является истинной то, что n может быть четным. Обе посылки никогда не являются одновременно истинными и пример не может быть опровергнут.

Эти рассуждения показывают, что Лукасевич понимал возможность экстенсионально, тогда как в системах Льюиса функторы L и M интенсиональны.

Так решение Аристотелевой проблемы в контексте борьбы с фатализмом привело Я. Лукасевича к созданию нового, оригинального направления в логике, которое впоследствии получило бурное развитие[279 — См., в частности: А.С.Карпенко. Многозначные логики – Логика и компьютер. Вып.4. М: Наука, 1997; А.С.Карпенко. Логика Лукасевича и простые числа. М., ИФРАН, 2001; С.А.Павлов. Трехзначная логика Лукасевича и логика ложности FL4. Logical Jorney Online Studies. 1998, 1 (http://www.logic.ru/Russian/LogStud/01/No1-13.html)].

4.6 Теория истинности А.Тарского

Тарский поставил цель определить предикат «истинный», используя в определениях только ясно приемлемые термины и избегая других недоопределенных семантических терминов.

Рассмотрим аргументацию Тарского[280 — См.: The Concept of Truth in Formalized Languages, in Logic, Semantics, Metamathematics. Clarendon Press. Oxford, 1956; Tarski A. The Semantic Conception of Truth and the Foundations of Semantics. – Philosophy and Phenomenology Research, v.4 (1944), pp. 341-375. Перепечатано, например, в: Martinich A. (ed.) The Philosophy of Language. Oxford University Press, 1996. Pp. 61-84 (далее цит. по этому изданию). Рус. пер. этих работ см. в кн.: Философия и логика Львовско-Варшавской школы. М., 1999; Аналитическая философия: становление и развитие (антология) (ред. А.Ф.Грязнов). М., 1998.]. Его задача – построить «удовлетворительное определение истины, т.е. такое, которое было бы материально адекватным и формально корректным»[281 — Tarski A. The Semantic Conception of Truth… Р.61.]. При этом, по его мнению, понятие истины всегда следует связывать с конкретным языком, поскольку о предложениях мы говорим только как о предложениях конкретного языка (в отличие от понятия «пропозиции»). Предложение, истинное в одном языке, будучи переведено на другой язык, может оказаться ложным или даже бессмысленным в этом языке. Предикат «истинно», считает Тарский, выражает свойство (или обозначает класс) определенных выражений, а именно декларативных предложений (а не пропозиций). Однако все дававшиеся раньше формулировки, направленные на то, чтобы объяснить значение этого слова, указывали не только на сами предложения, но также и на объекты, «о которых» эти предложения, или, возможно, на положения дел, описываемые ими. Более того, получается, что самый простой способ достичь точного определения истины – тот, который использует другие семантические понятия. Поэтому Тарский и причисляет понятие истины к семантическим понятиям, а проблема определения истины, по его мнению, демонстрирует свою близкую связь с более общей проблемой установления оснований теоретической семантики.

Тарский предлагает называть свою концепцию истины семантической, поскольку она имеет дело с определенными отношениями между выражениями языка и объектами или положениями дел, на которые эти выражения указывают. Таким образом, он разделяет репрезентационную картину языка. Среди множества концепций истинности Тарский выбирает для себя ту, на которой, как он считает, лучше всего основать собственное исследование этой темы. Он обращается к позиции, которую называет классической аристотелевой: «Сказать о том, что есть, что его нет, или о том, чего нет, что оно есть, ложно, тогда как сказать о том, что есть, что оно есть, или о том, чего нет, что его нет, истинно». Адаптируя аристотелево определение к современной ему философской терминологии, Тарский перефразирует его следующим образом: «Истина предложения состоит в его согласии (или соответствии) с реальностью»[282 — Ibid. P.62.]. Теории истины, прямо основывающиеся на этом тезисе (корреспондентные теории истины), Тарский, однако, не считает достаточно ясными и точными; они, по его мнению, могут приводить к различным неправильным толкованиям. Очевидно, что он не считает корреспондентную теорию истины неправильной – наоборот, он признает ее исходной для своей концепции, по-видимому, в том смысле, что в корреспонденции, как он считает, и заключено единственное содержание понятия «истина».

При каких условиях предложение «снег бел» истинно или ложно? Кажется очевидным, что, если мы будем исходить из классической корреспондентной концепции истины, то мы скажем, что предложение истинно, если снег бел, и что оно ложно, если снег не бел. Таким образом, полагает Тарский, определение истины, соответствующее корреспондентной ее трактовке, должно имплицировать эквивалентность следующего вида: «Предложениеснег бел“ истинно тогда и только тогда, когда снег бел». Обобщение процедуры определения истины на основании существующих критериев (например, корреспондентных) таково. Возьмем любое предложение и обозначим его буквой «р». Образуя имя этого предложения, мы заменяем его буквой «Х» – это еще одно кавычечное выражение в обобщающем определении. Согласно корреспондентной концепции истины, избранной Тарским в качестве исходной, логическое отношение между двумя предложениями – «Х истинно» и «р» – есть отношение эквивалентности следующего вида:

(Т) Х истинно ттт

Скачать:PDFTXT

Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать, Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать бесплатно, Аналитическая философия. А.Л. Блинов, М.В.Лебедев Философия читать онлайн