Скачать:TXTPDF
Атеизм и научная картина мира. В. Н. Комаров

точки зрения повседневных наглядных представлений о нем, обыденного здравого смысла, в по мере дальнейшего развития науки — и с точки зревия господствующих в данный момент, успевших стать привычными научных представлений.

«Именно прогресс фундаментальных знаний, — говорил с трибуны XXV съезда КПСС президент Академии наук СССР, академик А. П. Александров, — изменяет, казалось бы, установившиеся и незыблемые в науке точки зрения, открывает новые области в науке и технике… открывает возможности использования совершенно новых, часто неожиданных явлений в областях, совершенно не имевших никакого отношения к первоначальной области исследований».

Отмечая то обстоятельство, что свойства реального мира, открываемые в процессе научного исследования, могут вступать в противоречие с нашими привычными представлениями о нем, выдающийся физик XX столетия Макс Борн (1882–1970) подчеркивал, что решающим фактором развития естествознания является «необходимость признания человеком внешнего реального мира…, существующего независимо от человека и его способности идти вразрез со своими ощущениями там, где это нужно для сохранения данного убеждения».

Многие великие научные открытия основаны на способности ученого отвлекаться от своего обыденного опыта и гипноза наглядных представлений. Дело в том, что одна из характерных особенностей мира явлений, изучаемых современным естествознанием, состоит в том, что эти явления становятся все менее и менее наглядными.

В свое время некоторые философы считали: то, что нельзя наглядно представить, скажем замкнутый в себе мир, не может и существовать. Осознание того факта, что мир «странных», диковинных явлений реально существует и познается наукой, помогает освободиться от такого примитивного, неправильного подхода к понимавию природы и тем самым способствует прогрессу естествознания.

Очень многое из того, что изучают современная физика и астрофизика, нельзя представить себе наглядно.

Но понять можно! И в этом главное. Например, совершенно невозможно представить себе пространства со сложной геометрией. Но их свойства можно попять и описать с помощью соответствующего математического аппарата.

В то же время это вовсе не означает, что современные физики и астрономы в процессе научного исследования вообще не пользуются наглядными представлениями. Наглядные образы необходимы как в ходе научного поиска, так и при объяснении сложных явлений. Flo эти образы нельзя отождествлять с самим реальным миром: они носят условный, вспомогательный характер.

Копернику одному из первых удалось преодолеть гипноз наглядных представлений об окружающем мире и разглядеть за видимыми перемещениями небесных светил их подлинные движения в мировом пространстве.

Но и ряд последующих шагов, которые в конечном счете привели к построению картины мира классической физики, был также связан с преодолением, привычных представлений. Открывая свои «три закона», Кеплер преодолел распространенное в то время убеждение о круговом характере планетных орбит и движении планет с постоянными угловыми скоростями.

Формулируя свой «принцип инерции», Галилей должен был преодолеть представление о том, что равномерное прямолинейное движение тола происходит под действием постоянной силы.

Ньютон открыл закон тяготения вопреки убеждению о том, что планеты «подталкивают» какие-то неведомые таинственные силы…

И все же пока физика ограничивалась изучением таких процессов, с которыми человек сталкивается более или менее непосредственно, ее выводы не вступали в какие-либо особые противоречия с нашим повседневным опытом.

Когда же в начале XX столетия физика вторглась в мир микроявлений и занялась глубоким осмысливанием физических процессов космического масштаба, то она обнаружила ряд фактов, обстоятельств и закономерностей, которые оказались весьма странными и необычными не только с точки зрения обыденного здравого смысла, но и с позиций всего предшествующего классического естествознания.

Эти странности нашли свое отражение прежде всего в двух величайших теориях нашего века — квантовой механике и теории относительности.

Первая из них утвердила совершенно новые представления о свойствах мельчайших частиц материй — элементарных частиц. Оказалось, например, что не существует принципиальной разницы мея;ду частицей и волной, между веществом и излучением. В одних ситуациях частицы проявляют свои корпускулярные свойства, в других — волновые. Вещественные частицы могут превращаться в излучение, а порции излучения — фотоны — в вещественные частицы.

Одним из самых поразительных выводов квантовой физики, противоречащих как наглядным представлениям о мире, так и основам классической физики, явился так называемый принцип неопределенности, о котором было упомянуто в одной из предыдущих глав. Оказалось, что у микрочастицы никакими средствами невозможно одновременно точно измерить скорость и положение в пространстве. Это означало, что у микрочастиц нет траекторий движения в обычном понимании, а они представляют собой нечто вроде размазанного в пространстве облака.

Еще необычнее оказались выводы теории относительности. В частности, выяснилось, что многие физические величины, которые казались абсолютными и неизменными, например, масса какого-либо тола, длины отрезков, промежутки времени, в действительности являются-относительными, зависящими от характера движения системы, в которой происходят те или иные физические явления.

Так, оказалось, что масса тела возрастает с увеличением его скорости. И потому масса, скажем, протона или нейтрона, летящего со скоростью, близкой к скорости света, может в принципе превзойти массу Земли, Солнца и даже массу нашей звездной системы — Галактики.

Но все это были еще только самые первые шаги в тот удивительный, странный мир науки, который во второй половине XX столетия все стремительнее развертывается перед нами.

В глубинах микромира

Одной из наиболее фундаментальных областей современного естествознания является физика микромира, занимающаяся изучением строения материи на уровне микропроцессов — атомов, атомных ядер и элементарных частиц.

В течение последних десятилетий эта область науки бурно прогрессировала. Еще какие-нибудь двадцать лет назад физикам было известно всего около десятка элементарных частиц, и казалось, что именно из этих частиц и состоят все объекты окружающего нас мира. Но затем благодаря введению в строй гигантских ускорителей и применению электронно-вычислительной техники было открыто множество новых частиц сейчас их число измеряется сотнями.

Далее в физике микромира наступило заметное затишье. Во всяком случае, лет пять назад многие специалисты высказывали мнение, что эта область физической науки явно отступает на второй план.

Однако застой оказался временным, и в последние годы ситуация изменилась самым существенным образом.

Получила развитие особая область физики элементарных частиц — так называемых новых частиц. Были обнаружены так называемые пси-частицы, обладающие весьма интересными свойствами.

Еще в 1964 г. физики-теоретики М. Гелл-Манн в Г. Цвейг, исходя из некоторых теоретических соображений, выдвинули смелую и оригинальную идею об особых фундаментальных частицах кварках. Согласно этой идее существуют три кварка с дробными электрическими зарядами и три соответствующих им антикварна. Из кварков и антикварков могут быть построены протоны, нейтроны, гипероны, мезоны, их античастицы, а также некоторые другие элементарные частицы.

В теоретическом отношении гипотеза кварков оказалась весьма интересной и многообещающей. Во всяком случае, в мире элементарных частиц все происходит именно так, как если бы кварки действительно существовали.

С 1964 по 1970 г. во многих лабораториях мира предпринимались активные поиски кварков. Их искали на ускорителях элементарных частиц, в космических лучах и даже в образцах лунного грунта. Однако обнаружить кварки в свободном состоянии так и не удалось. Правда, время от времени в печати появляются сообщения о том, что эти частицы наконец открыты, по дальнейшие исследования подобные сообщения не подтверждают.

В связи с этим произошло некоторое охлаждение к гипотезе кварков. И в то же время без кварков было бы очень трудно объяснить многие свойства элементарных частиц. Поэтому, несмотря ни на что, гипотеза кварков продолжала развиваться. В результате теоретики пришли к выводу, что должен существовать еще один четвертый кварк, так называемый С-кварк, со своим антикварном.

В числе прочих физических характеристик этого кварка имеется новое, так называемое квантовое число, получившее название «очарования» или «чарма».

По если есть четвертый кварк, то должны существовать и частицы, в состав которых он входит. Именно одна из такпх- частиц — джей-пси-мезон и была обнаружена в ноябре 1974 г.

Есть предположение, что джей-пси-мезон представляет собой своеобразную атомоподобную систему, которая состоит из С-кварка и его антикварка. Эту систему назвали «чармонием».

Если это предположение соответствует действительности, то джей-пси-мезон, видимо, представляет собой нечто иное, как один из возможных энергетических уровней чармония.

Не исключена также возможность, что в природе существуют образования, состоящие из комбинаций «старых» и «новых» кварков. Сперва подобные объекты попытались «сконструировать» теоретики, а в конце 1976 г. появились сообщения об открытии чармированных мезонов и чармированного бариона. Любопытно отметить, что джей-пси-мезон оказался самым тяжелым мезоном среди всех известных современной физике. В то же время весьма велика и продолжительность жизни джей-пси-мезона. Она составляет около 10~20 с. Это примерно в тысячу раз больше, чем продолжительность существования других тяжелых частиц. А в 1977 г. была открыта ипсилон-частица, предсказанная теорией как комбинация шестого кварка и антикварка. Ее масса равна пяти массам протона. Тот факт, что пси-частицы оказались сравнительно долгоживущими, наводит на мысль, что, быть может, в природе есть некое еще неизвестное нам правило запрета, накладывающее «вето» на быстрый распад джей-пси-мезона и других подобных частиц.

Открытие пси-частиц послужило весьма важным свидетельством в пользу гипотезы кварков и заставило ещо раз задуматься над тем, почему эти объекты не удается обнаружить на опыте.

Для объяснения возникшей ситуации была предложена любопытная идея так называемого удержания кварков.

Речь идет о том, что, быть может, вообще в природе существуют частицы, в том числе и кварки, которые в принципе невозможно оторвать друг от друга и выделить в чистом виде. Согласно этой идее силы, связывающие между собой два кварка, возможно, имеют не электромагнитную, а какую-то иную природу. Не исключено, что по своему характеру они напоминают бесконечно узкую, упругую, как бы «резиновую» трубку. Такая упругая трубчатая связь не позволяет оторвать один кварк от другого, — «растягиваясь» при внешнем воздействии, она затем — сокращается и возвращает кварк на место. Таким образом, не исключена возможность, что кварки представляют собой особый тип образований, которые могут существовать только в совокупности и которые принципиально невозможно разделить. Не исключено также, что дальнейшее развитие физики элементарных частиц покажет, что, помимо четырех кварков, фигурирующих в настоящее время, существуют и другие, более тяжелые. Возможно, ответ на этот вопрос удастся получить в самое ближайшее время. Теория элементарных частиц наряду с астрофизикой всегда играла важную роль в формировании новых представлений о явлениях окружающего нас мира. В частности, современная теория элементарных частиц не только знакомит нас с новыми объектами, но по мере своего развития ведет в глубины «все более странного мира». Одним из весьма любопытных объектов «странного мира» современной микрофизики являются так называемые сверхсветовые частицы, или тахионы.

Быстрее света

Согласно теории относительности Эйнштейна, которая является одной из фундаментальных основ современного естествознания, скорость передачи любых физических взаимодействий не может превосходить скорости света.

Однако можно предположить, что наряду с миром досветовых взаимодействий существует нигде не пересекающийся с ним мир сверхсветовых скоростей, в котором скорость света является не верхней, а нижней границей скорости физических процессов. Подобное предположение в принципе не только не противоречит существу теории относительности, но, наоборот, делает эту теорию более симметричной и внутренне согласованной, обобщая ее на

Скачать:TXTPDF

Атеизм и научная картина мира. В. Н. Комаров Философия читать, Атеизм и научная картина мира. В. Н. Комаров Философия читать бесплатно, Атеизм и научная картина мира. В. Н. Комаров Философия читать онлайн