его теорией, тогда открытие есть процесс и должно быть длительным по времени. Только если все соответствующие концептуальные категории подготовлены заранее, открытие чего-то и определение, что это такое, легко осуществляется совместно и одновременно (но в таком случае нельзя было бы говорить о явлении нового вида).
Допустим теперь, что открытие предполагает продолжительный, хотя и не обязательно очень длительный, процесс концептуального усвоения. Можем ли мы также сказать, что оно влечет за собой изменение парадигмы? На этот вопрос нельзя дать общего ответа, но в данном случае, по крайней мере ответ должен быть утвердительным. То, о чем писал Лавуазье в своих статьях начиная с 1777 года, было не столько открытием кислорода, сколько кислородной теорией горения. Эта теория была ключом для перестройки химии, причем такой основательной, что ее обычно называют революцией в химии. В самом деле, если бы открытие кислорода не было непосредственной частью процесса возникновения новой парадигмы в химии, то вопрос о приоритете, с которого мы начали, никогда не казался бы таким важным. В этом случае, как и в других, определение того, имеет ли место новое явление, и, таким образом, установление его первооткрывателя меняется в зависимости от нашей оценки той степени, в которой это явление нарушило ожидания, вытекающие из парадигмы. Заметим, однако (так как это будет важно в дальнейшем), что открытие кислорода само по себе не было причиной изменения химической теории. Задолго до того, как Лавуазье сыграл свою роль в открытии нового газа, он был убежден, что в теории флогистона было что-то неверным и что горящие тела поглощают какую-то часть атмосферы. Многие соображения по этому вопросу он сообщил в заметках, отданных на хранение во Французскую Академию в 1772 году. Работа Лавуазье над вопросом о существовании кислорода дополнительно способствовала укреплению его прежнего мнения, что где-то был допущен просчет. Она подсказала ему то, что он уже готов был открыть, — природу вещества, которое при окислении поглощается из атмосферы. Это более четкое осознание трудностей, вероятно, было главным, что заставило Лавуазье увидеть в экспериментах, подобных экспериментам Пристли, газ, который сам Пристли обнаружить не смог. И наоборот, для того, чтобы увидеть то, что удалось увидеть Лавуазье, был необходим основательный пересмотр парадигм, что оказалось принципиальной причиной того, что Пристли до конца своей жизни не смог увидеть кислород.
Два других и гораздо более кратких примера подтвердят многое из сказанного. Одновременно они позволят нам перейти от выяснения природы открытий к пониманию обстоятельств, при которых они возникают в науке. Стараясь представить главные пути, которыми могут возникать открытия, мы выбрали эти примеры так, чтобы они отличались как друг от друга, так и от открытия кислорода. Первый, открытие рентгеновских лучей, представляет собой классический пример случайного открытия. Данный тип открытия встречается гораздо чаще, чем это можно заключить на основании сухих стандартных сообщений. История открытия рентгеновских лучей начинается с того дня, когда физик Рентген прервал нормальное исследование катодных лучей, поскольку заметил, что экран, покрытый платиносинеродистым барием, на некотором расстоянии от экранирующего устройства светился во время разряда. Дальнейшее исследование (оно заняло семь изнурительных недель, в течение которых Рентген редко покидал лабораторию) показало, что причиной свечения являются прямые лучи, исходящие от катодно-лучевой трубки, что излучение дает тень, не может быть отклонено с помощью магнита и многое другое. До того как Рентген объявил о своем открытии, он пришел к убеждению, что этот эффект обусловлен не катодными лучами, а излучением, в некоторой степени напоминающим свет.
Даже такое краткое изложение сути дела показывает разительное сходство с открытием кислорода: до экспериментов с красной окисью ртути Лавуазье проводил эксперименты, которые не подтверждали предсказания с точки зрения флогистонной парадигмы. Открытие Рентгена началось с обнаружения свечения экрана, когда этого нельзя было ожидать. В обоих случаях осознание аномалии, то есть явления, к восприятию которого парадигма не подготовила исследователя, сыграло главную роль в подготовке почвы для понимания новшества. Но опять-таки в обоих случаях ощущение того, что не все идет, как задумано, было лишь прелюдией к открытию. Ни открытие кислорода, ни открытие рентгеновских лучей не совершались без дальнейшего процесса экспериментирования и усвоения. Например, в каком пункте работы Рентгена можно сказать, что рентгеновские лучи действительно уже открыты? В любом случае это открытие совершилось не на первом этапе, когда было замечено только свечение экрана. По крайней мере еще один исследователь наблюдал это свечение и ничего нового не обнаружил, что впоследствии вызвало его досаду. Точно так же — и это вполне очевидно — момент открытия нельзя было приблизить и в течение последней недели исследования, когда Рентген изучал свойства нового излучения, которое он уже открыл. Мы можем сказать лишь, что рентгеновские лучи были открыты в Вюрцбурге в период между 8 ноября и 28 декабря 1895 года.
Однако, если взять третью из перечисленных выше категорий фактов, то здесь наличие важных аналогий между открытием кислорода и рентгеновских лучей далеко не так очевидно. В отличие от открытия кислорода открытие рентгеновских лучей, по крайней мере в течение последующих 10 лет, не вызвало ни одного явного изменения в научной теории. В таком случае возникает вопрос: в каком смысле можно говорить, что восприятие этого открытия потребовало изменения парадигмы? Повод для отрицания этого изменения весьма серьезен. Разумеется, парадигмы, признанные Рентгеном и его современниками, нельзя было использовать для предсказания рентгеновских лучей. Электромагнитная теория Максвелла еще не была принята повсеместно, а партикулярная теория катодных лучей была лишь одним из многих ходячих спекулятивных построений. Но ни одна из этих парадигм, по крайней мере в любом известном смысле, не накладывала запрет на существование рентгеновских лучей так, как теория флогистона запрещала интерпретацию полученного Пристли газа в смысле, предложенном Лавуазье. Наоборот, в 1895 году принятые научные теории и практика научных исследований допускали ряд различных типов излучения видимого, инфракрасного и ультрафиолетового света. Почему бы, спрашивается, не считать рентгеновские лучи еще одной формой хорошо известного класса явлений природы? Например, почему они не были восприняты точно так же, как воспринимается открытие новых химических элементов? Новые элементы, заполняющие пустые клетки в периодической таблице, разыскивались и обнаруживались во времена Рентгена. Их поиск был типичным проектом для нормальной науки, а успех был лишь поводом для поздравлений, но не для удивления.
Тем не менее открытие рентгеновских лучей было не только удивительным, но и потрясающим. Лорд Кельвин объявил их вначале тщательно разработанной мистификацией. Другие же, хотя и не сомневались в доказательстве, были явно потрясены открытием. Если наличие рентгеновских лучей и не вступало в явное противоречие с установившейся теорией, они все же нарушали глубоко укоренившиеся ожидания. Эти ожидания, как я полагаю, скрыто присутствовали в проведении и интерпретации отработанных лабораторных процедур. К 90 годам ХIХ века установками для получения катодных лучей было оснащено множество лабораторий в Европе. Если установка Рентгена позволяла получать рентгеновские лучи, то многие другие экспериментаторы, должно быть, в течение некоторого времени получали эти лучи, но сами этого не знали. Возможно, что эти лучи могли иметь точно так же и другие неизвестные источники и таким образом присутствовали и в других явлениях, объясненных ранее без упоминания о рентгеновских лучах. По крайней мере, некоторые виды хорошо известных приборов следовало с этого времени снабжать свинцовыми экранами. Теперь предварительно выполненную по проектам нормальной науки работу необходимо было проделать заново, поскольку до сих пор ученым не удавалось узнать и проконтролировать соответствующие переменные величины. Рентгеновские лучи, разумеется, открыли новую область и таким образом расширили потенциальную сферу нормальной науки. Но сейчас наиболее важный момент состоял в том, что они внесли изменения в те области, которые уже существовали. В силу этого они отняли у прежних парадигмальных типов инструментария право на этот титул.
Короче говоря, решение использовать особый вид аппаратуры и эксплуатировать его особым образом влечет за собой допущение, сознательно или нет, что будут иметь значение только определенные виды условий. Ожидания бывают как инструментальные, так и теоретические, и они часто играли решающую роль в развитии науки. Одно из таких ожиданий, например, имело большое значение в истории запоздалого открытия кислорода. Используя стандартный способ проверки воздуха на “доброкачественность”, и Пристли и Лавуазье смешивали два объема обнаруженного ими газа с одним объемом окиси азотистой кислоты, встряхивали смесь в присутствии воды и измеряли объем оставшегося газа. Предыдущий опыт, на основе которого была установлена эта стандартная процедура, гарантировал им, что для атмосферного воздуха остаток должен быть равен одному объему и что для любого другого газа (или для неочищенного воздуха) он должен быть больше. В эксперименте с кислородом как Пристли, так и Лавуазье обнаружили остаток, близкий одному объему, и в соответствии с этим идентифицировали газ. Только значительно позже и в какой-то степени случайно Пристли отбросил стандартную процедуру и попытался смешивать окись азотистой кислоты с газом в другой пропорции. Тогда он и обнаружил, что с учетверенным объемом окиси азотистой кислоты остатка вообще почти не наблюдается. Его предписание относительно исходной процедуры контрольного эксперимента — процедуры, санкционированной большим предшествующим опытом, — было одновременно предписанием отрицать существование газов, которые могли вести себя так, как кислород.
Иллюстрации такого рода можно было бы умножить, обращаясь, например, к причинам того, почему так поздно было правильно понято деление урана. Одна из причин, почему эта ядерная реакция оказалась особенно трудной для распознания, заключалась в том, что ученые, знавшие, чего можно ожидать при бомбардировке урана, предпочитали химические способы проверки, направленные главным образом на элементы верхнего ряда периодической системы элементов. Должны ли мы, наблюдая за тем, как часто такие инструментальные предписания приводят к заблуждениям, сделать вывод, что наука должна отказаться от стандартных проверок и стандартных инструментов? Это могло бы привести к неразберихе в методе исследования. Процедуры парадигмы и ее приложения необходимы науке так же, как парадигмальные законы и теории, и служат тем же самым целям. Они неизбежно сужают область явлений, доступную в данное время для научного исследования. Осознавая это, мы в то же время можем видеть тот существенный момент, согласно которому открытия, подобные открытию рентгеновских лучей, делают необходимым изменение парадигмы — и, следовательно, изменение как процедур, так и ожиданий — для определенной части научного сообщества. В результате мы можем также понять, каким образом открытие рентгеновских лучей могло показаться многим ученым открытием нового странного мира и могло так эффективно участвовать в кризисе, который привел к физике ХХ века.
Наш последний пример научного открытия — создание лейденской банки — относится к классу, который можно характеризовать как открытия, “индуцированные теорией”. На первый взгляд этот