Скачать:TXTPDF
Философия и методология науки XX века

специальных целей своего исследования приспосабливает что-то так как оно должно быть в том или другом случае. Не следует полагать, что когда ученый наблюдает за качающимся камнем, то единственное, что он видит, так это маятник. (Мы уже отмечали, что члены иного научного сообщества могли видеть сдерживаемое падение.) Однако следует полагать, что ученый, смотрящий на качающийся камень, может не иметь опыта, который в принципе более элементарен, чем восприятие колебания маятника. Другая возможность состоит не в некотором гипотетически “закрепленном” восприятии, а в восприятии с помощью другой парадигмы, которая что-то дополняет к восприятию качающегося камня.

Все это может выглядеть более обоснованным, если мы снова вспомним, что ни ученый, ни дилетант не приучены видеть мир по частям или пункт за пунктом. Исключая случаи, когда все концептуальные и операциональные категории подготовлены заранее (например, для открытия еще одного трансуранового элемента или для того, чтобы увидеть новый дом), и ученый и дилетант выделяют целые области из потока опыта. Ребенок, который переносит словомама” со всех людей на всех женщин, а затем на свою мать, также не просто узнает, что означает словомама” или кем является его мать. В это же самое время он усваивает и некоторые различия между мужчинами и женщинами, а также манеру поведения по отношению к нему, характерную только для одной женщины из всех. Его реакции, ожидания и убеждения (большая часть его восприятия мира) изменяются соответственно. По той же причине коперниканцы, которые отказались от традиционного обозначения солнца “планетой”, не только получили знание того, что охватывается словомпланета” или чем является солнце. Взамен они изменили значение слова “планета” так, что оно смогло по-прежнему содействовать полезным различениям в мире, где все небесные тела, не только солнце, воспринимались по-иному, нежели они казались до этого. Такой взгляд можно было бы отстаивать относительно любого ранее приведенного нами примера. Видеть кислород вместо дефлогистированного воздуха, конденсатор вместо лейденской банки или маятник вместо сдерживаемого падения — это только одна часть в общем сдвиге научного видения великого множества рассмотренных химических, электрических или динамических явлений. Парадигмы определяют большие области опыта одновременно.

Однако этот поиск операционального определения или чистого языка наблюдений можно начать лишь после того, как опыт будет таким образом детерминирован. Ученый или философ, который спрашивает, какие измерения или изображения на сетчатке глаза делают маятник тем, чем он есть, должен уже уметь распознать маятник, когда увидит его. Если он увидел вместо этого сдерживаемое цепочкой падение, то такой вопрос даже не может быть им поставлен. А если он увидел маятник в том же самом виде, в каком он видел камертон или колеблющиеся весы, то на его вопрос нельзя ответить. По крайней мере, на него нельзя ответить тем же самым способом, потому что в таком случае это не будет ответом именно на поставленный вопрос. Следовательно, вопросы об изображении на сетчатке или о последовательности специальных лабораторных операций, хотя они всегда правильны, а иногда и чрезвычайно плодотворны, предполагают мир уже определенным способом расчлененным перцептуально и концептуально. В некотором смысле такие вопросы являются элементами нормальной науки, ибо они зависят от существования парадигмы и предполагают различные ответы в результате изменения парадигмы.

Чтобы закончить этот раздел, оставим в стороне рассмотрение изображения на сетчатке глаза и снова ограничим внимание лабораторными операциями, которые обеспечивают ученого хотя и фрагментарными, но зато конкретными указаниями на то, что он уже видел. Один из способов, которым лабораторные операции изменяются с помощью парадигм, уже рассматривался неоднократно. После научной революции множество старых измерений и операций становится нецелесообразными и заменяются соответственно другими. Нельзя применять одни и те же проверочные операции как к кислороду, так и к дефлогистированному воздуху. Но изменения подобного рода никогда не бывают всеобщими. Что бы ученый после революции ни увидел, он все еще смотрит на тот же самый мир. Более того, значительная часть языкового аппарата, как и большая часть лабораторных инструментов, все еще остаются такими же, какими они были до научной революции, хотя ученый может начать использовать их по-новому. В результате наука после периода революции всегда включает множество тех же самых операций, осуществляемых теми же самыми инструментами, и описывает объекты в тех же самых терминах, как и в дореволюционный период. Если все эти устойчивые манипуляции вообще подвергаются изменению, то оно должно касаться либо их отношения к парадигме, либо конкретных результатов. Теперь я считаю на основе последнего примера, который я привожу ниже, что имеют место оба вида изменений. Рассматривая работу Дальтона и его современников, мы увидим, что одна и та же операция, когда она применяется к природе через другую парадигму, может свидетельствовать совершенно о другой стороне закономерности природы. Кроме того, мы увидим, что изредка старая манипуляция, выступая в новой роли, даст другие конкретные результаты.

В течение большей части ХVIII века и в ХIХ веке европейские химики почти все верили, что элементарные атомы, из которых состоят все химические вещества, удерживаются вместе силами взаимного сродства. Так, кусок серебра составляет единство в силу сродства между частицами серебра (до периода после Лавуазье эти частицы мыслились как составленные из еще более элементарных частиц). По этой же теории серебро растворяется в кислоте (или соль — в воде) потому, что частицы кислоты притягивают частицы серебра (или частицы воды притягивают частицы соли) более сильно, нежели частицы этих растворяемых веществ, притягиваются друг к другу. Или другой пример. Медь должна растворяться в растворе серебра с выпадением серебра в осадок, потому что сродство между кислотой и медью более сильное, чем сродство кислоты и серебра. Множество других явлений было истолковано тем же самым способом. В ХVIII веке теория избирательного сродства была превосходной химической парадигмой, широко и иногда успешно используемой при постановке химических экспериментов и анализе их результатов.

Однако теория сродства резко отличала физические смеси от химических соединений, причем производила это способом, который сделался необычным после признания работ Дальтона. Химики ХVIII века признавали два вида процессов. Когда смешивание вызывало выделение тепла, света, пузырьков газа или какие-либо подобные эффекты, то в этом случае считалось, что происходит химическое соединение. Если, с другой стороны, частицы в смеси можно было различить визуально или отделить механически, то это было лишь физическое смешивание. Но в огромном числе промежуточных случаев (растворение соли в воде, сплавы, стекло, кислород в атмосфере и так далее) столь грубые критерии приносили мало пользы. Руководимые своей парадигмой, большинство химиков рассматривали весь этот промежуточный ряд как химический, потому что процессы, свойственные ему, целиком управлялись силами одного и того же типа. Растворение соли в воде, кислорода в азоте как раз давали такой же пример химического соединения, как и соединение, образованное в результате окисления меди. Аргументация в пользу того, чтобы рассматривать растворы как химические соединения, была очень веской. Теория сродства в свою очередь хорошо подтверждалась. Кроме того, образование соединений объяснялось наблюдаемой гомогенностью раствора. Например, если кислород и азот были только смесью, а не соединены в атмосфере, тогда более тяжелый газ, кислород, должен был опускаться на дно. Дальтон, который считал атмосферу смесью, никогда не мог удовлетворительно объяснить тот факт, что кислород ведет себя иначе. Восприятие его атомистической теории в конце концов породило аномалию там, где ее до того не было.

Невольно хочется сказать, что отличие взглядов химиков, которые рассматривали растворы как соединения, от взглядов их преемников касалось только определений. В одном отношении дело могло обстоять именно таким образом. Но это справедливо не в том смысле, что делает определения просто конвенционально удобными. В ХVIII веке химики не могли в полной мере отличить с помощью операциональных проверок смеси от соединений, возможно, их и нельзя было отличить на тогдашнем уровне развития науки. Даже если химики прибегали к таким проверкам, они должны были искать критерий, который позволил бы рассматривать такой раствор как соединение. Различение смеси и раствора составляло элемент их парадигмы — элемент того способа, которым химики рассматривали всю область исследования, — и в этом качестве он обладал приоритетом по отношению к любому отдельно взятому лабораторному эксперименту, хотя и не по отношению к накопленному опыту химии в целом.

Но поскольку химия рассматривалась под таким, углом зрения, химические явления стали примерами законов, отличных от тех, которые возникли с принятием новой парадигмы Дальтона. В частности, пока растворы рассматривались как соединения, никакие химические эксперименты, сколько бы их ни ставили, не могли сами по себе привести к закону кратных отношений. В конце ХVIII века было широко известно, что некоторые соединения, как правило, характеризовались кратными весовыми отношениями своих компонентов. Для некоторых категорий реакций немецкий химик Рихтер получил даже дополнительные закономерности, в настоящее время включаемые в закон химических эквивалентов. Но ни один химик не использовал эти закономерности, если не считать рецепты, и ни один из них почти до конца века не подумал о том, чтобы обобщить их. Если и наблюдались очевидные контрпримеры, подобно стеклу или растворению соли в воде, то все же ни одно обобщение не было возможно без отказа от теории сродства и без перестройки концептуальных границ области химических явлений. Такое заключение стало неизбежным к самому концу столетия после знаменитой дискуссии между французскими химиками Прустом и Бертолле. Первый заявлял, что все химические реакции совершались в постоянных пропорциях, а второй отрицал это. Каждый подобрал внушительное экспериментальное подтверждение для своей точки зрения. Тем не менее два ученых спорили друг с другом, хотя результаты их дискуссии были совершенно неубедительны. Там, где Бертолле видел соединение, которое могло менять пропорции входящих в него компонентов, Пруст видел только физическую смесь. Этот вопрос невозможно было удовлетворительно решить ни экспериментом, ни изменением конвенционального определения. Два исследователя столь же фундаментально расходились друг с другом, как Галилей и Аристотель.

Такова была ситуация в те годы, когда Дальтон предпринял исследование, которое в конце концов привело его к знаменитой атомистической теории в химии. Но до самых последних стадий этих исследований Дальтон не был химиком и не интересовался химией. Он был метеорологом, интересующимся (для себя) физическими проблемами абсорбции газов в воде и воды в атмосфере. Частью потому, что его навыки были приобретены для другой специальности, а частично благодаря работе по своей специальности он подходил к этим проблемам с точки зрения парадигмы, отличающейся от парадигмы современных ему химиков. В частности, он рассматривал смесь газов или поглощение газов в воде как физический процесс, в котором виды сродства не играли никакой роли. Поэтому для Дальтона наблюдаемая гомогенность растворов была проблемой, но проблемой, которую, как

Скачать:TXTPDF

Философия и методология науки XX века читать, Философия и методология науки XX века читать бесплатно, Философия и методология науки XX века читать онлайн