Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Философия. Учебник для студентов технических ВУЗов

объектов.

Построим аналогию. Известно, что Солнце — рядовая звезда нашей Галактики, в которой порядка 100 миллиардов таких звезд. У этих светил много

общего: огромные массы (до 100 масс Солнца), высокая температура, определенная светимость, спектр излучения и т.д. У них есть спутники — планеты. По аналогии с нашей солнечной системой ученые делают вывод, что

кроме нашей, в Галактике есть еще обитаемые миры, что мы не одиноки во

Вселенной.155

Примеры подобных рассуждений можно продолжить. Но не в них дело.

Важно, что метод аналогий прокладывает дорогу к моделированию как более

сложному методу, о котором мы еще будем говорить. Заметим вместе с тем,

что аналогия не дает абсолютной достоверности вывода: в ней всегда есть

элемент догадки, предположения. И только опыт и практика могут вынести

окончательный приговор той или иной аналогии.

Перейдем к формализации. Сам этот термин неоднозначен и применяется в разных значениях. Первое — как метод решения специальных проблем в

математике и логике. Например, доказательство непротиворечивости математических теорий, независимости аксиом и др. Вопросы такого рода решаются путем использования специальной символики, что позволяет оперировать не с утверждениями теории в их содержательном виде, а с набором символов, формул разного рода и др. Второе — в широком смысле — под формализацией понимается метод изучения разнообразных проблем путем отображения их содержания, структуры, отношений и функций при помощи

различных искусственных языков: математики, формальной логики и других

наук.

В чем состоит роль формализации в науке? Прежде всего, формализация

обеспечивает полноту обозрения определенных проблем, обобщенность подхода к ним. Далее, благодаря символике, с чем формализация неизбежно связана, исключается многозначность (полисемия) и размытость терминов

обычного языка. В результате чего рассуждения становятся четкими и строгими, а выводы доказательными. И, наконец, формализация обеспечивает

упрощение изучаемых объектов, заменяет их исследование изучением моделей: возникает как бы моделирование на основе символики и формализмов.

Это помогает успешнее решать различные познавательные, проектировочные, конструкторские и др. задачи.

Из сказанного уже видно, что формализация связана с моделированием,

она связана также с абстрагированием, идеализацией и другими методами.

По отношению к моделированию она носит вспомогательный характер. Абстрагирование и идеализация, наоборот, — предпосылки для формализации.

Моделирование. Во втором разделе главы уже говорилось о моделях

разного рода, в том числе натурных. Между тем, моделирование, как мощный и эффективный метод применяется и на теоретическом уровне. Здесь он,

будучи комплексным, опирается на предыдущие методы.

Различают аналоговое моделирование, когда оригинал и модель описываются одинаковыми математическими уравнениями, формулами, схемами и

т.п. Таким путем может быть представлена как гипотеза, так и закон, которые

выступают предварительно качественно в виде простых отношений. В науке

и технике часто поступают именно так. Сложнее — знаковое моделирование.

Здесь в роли моделей, — заместителей реальных объектов, — служат числа,

схемы, символы и др. Собственно, и технический проект в значительной своей части выражается именно таким способом. Но этот вид моделирования

получает дальнейшее свое развитие благодаря математике и логике в виде156

логико-математического моделирования. Здесь операции, действия с вещами,

процессами, явлениями, свойствами и отношениями замещены знаковыми

конструкциями, структурой их отношений, выражением на этой основе динамики объектов, их функций и др. Еще одним шагом вперед стало развитие

модельного представления информации на компьютерах (компьютерное моделирование). Построенные здесь модели опираются на дискретное представление информации об объектах. Открывается возможность моделировать

в режиме реального времени, строить виртуальную реальность.

Для успеха моделирования необходимо наличие и таких форм знания

как язык (термины) науки, гипотеза, закон, теория.

Но прежде рассмотрим аксиоматический метод. Это — метод организации наличного знания в дедуктивную систему. Он широко применяется в

математике и математизированных дисциплинах. При применении этого метода ряд идей, ранее доказанных или очевидных, простых вводится в основы

теории в виде исходных положений ( в рамках данной теории они не доказываются). В математике их называют аксиомами, в теоретической физике и

химии — “началами” или принципами. Все остальное знание — все теоремы,

все законы и следствия — выводятся из них по определенным логическим

правилам (по дедукции).

Утверждение аксиоматического метода в науке связывают с появлением

знаменитых “Начал” Евклида. Но элементы аксиоматики встречались и

раньше. С развитием науки этот метод проникает в разные науки из математики и логики, где он главенствует. Примерами таких наук и теорий будут

также аналитическая механика (у Лагранжа, Гамильтона, Герца и др.), теория

электромагнитного поля Максвелла, теория относительности и др.

Основные требования к данному методу таковы: непротиворечивость

аксиом, то есть в системе аксиом или начал не должны одновременно присутствовать некоторое утверждение и его отрицание; полнота, то есть аксиом

без следствий не должно быть и их количество должно дать нам все следствия или их отрицания; независимость, когда любая аксиома не должна быть

выводима из других. К данной системе добавить больше нечего.

Достоинства аксиоматического метода состоят в следующем. Аксиоматизация требует точного определения используемых понятий и строгости

рассуждений. Она упорядочивает знание, исключает из него ненужные элементы, устраняет двусмысленность и противоречия, позволяет по-новому

взглянуть на прежде достигнутое знание в рамках определенной теоретической системы. Правда, применение этого метода ограничено. В нематематизированных науках такой метод играет лишь вспомогательную роль. Но и в

рамках математики он тоже имеет определенные границы. В выяснении этого

вопроса выдающуюся роль сыграла доказанная К.Гёделем теорема о принципиальной неполноте развитых формальных систем знания. Суть ее в том, что

в рамках данной системы можно сформулировать такие утверждения, которые нельзя ни доказать, ни опровергнуть без выхода данной аксиоматизированной системы (в метатеорию). Для всей математики такую роль играет157

арифметика. Результат Гёделя привел к краху иллюзии математиков о всеобщей аксиоматизации математики.

Системный метод и системный подход появились в арсенале человеческого знания и деятельности в XX веке благодаря в первую очередь Л. фон

Берталанфи, австрийскому биологу-теоретику (с 1949 г. жил и работал в

США и Канаде), оформилась в “Общую теорию систем” (ОТС). Развитие

этой теории бурно протекало, начиная с 50-х гг. XX века. Однако в зрелом

виде, еще в самом начале нашего века, эти идеи (как и идеи кибернетики) изложил в своей всеобщей организационной науке “тектологии” русский ученый А.А. Богданов (Малиновский). Сейчас происходит буквально второе открытие работ Богданова. Ранее идеи системности развивались не как универсальные, а как частные идеи, относящиеся к организации знания, к математическим объектам (в теориях множеств, групп), объектам механики. Большую

роль в XX веке сыграли работы французских структуралистов — биологов,

этнографов и лингвистов. Все же главный стержень системных идей создали

работы биологов и философская концепция органицизма, ведущая традицию

из глубокой древности.

Онтология систем. Заметим, что в рамках позитивизма существование

онтологии систем оспаривалось. Между тем, объективно, мир состоит из

систем, сот, сетей, хаоса и пленумов (непрерывных сущностей), взаимно

проникающих друг в друга и взаимодействующих. Но что такое система?

Кучу песка, камней или толпу на улице вряд ли кто-нибудь назовет системой.

Это, скорее, агрегаты. Их свойства можно определить как сумму свойств частей (в науке говорят, что они аддитивны). Рабочее определение системы таково: система — это множество элементов, находящихся в отношениях или

связях друг с другом и образующих целостность или органическое единство

(Дж. Клир). Богданов в своей тектологии показал, что существуют два способа образования систем. Согласно первому система возникает из соединения

как минимум двух объектов посредством третьей сущности — связи. Второй

способобразование систем за счет распада ранее существовавших. Особенно наглядно оба эти способа видны в химии, в двух видах химических реакций: соединения и разложения.

Истинная система интегральна, а не аддитивна. При этом понятия “элемент”, “отношение”, “система” и др. используются в самом широком смысле.

Так, отношение — это и некое ограничение, и сцепление, и связь, и соединение, и взаимосвязь, и зависимость, и корреляция, и др. Элементы, то есть некие первоначально как бы независимые сущности, образуют основу любой

системы, ее субстрат. Систем без элементов и отношений не бывает, как не

существует элементов, если они вне системы: элемент тогда элемент, если он

часть целого — системы.

Важными понятиями системного анализа являются понятия структуры

и организации. Структурой называют чаще всего строение отношений и связей в системе, ее архитектуру, форму, устойчивую композицию, а организацией — совокупность структуры и программы поведения системы, меняю-158

щейся или постоянной. Многие авторы нередко отождествляют понятия

структуры и организации. Заметим, что внутренняя форма системы — это

ее каркас и опора.

Существует многообразие видов систем: 1) по форме — это централистские и ацентрические (звездные); 2) по природе — материальные и идеальные, включая информационные; биокосные и живые; природные и искусственные (вроде технических и др.); 3) по видам движения — вещественные и

полевые, в том числе физические, химические, биологические и социальные;

4) по взаимосвязи с окружением — изолированные и открытые; 5) по активности — активные и пассивные; 6) по функциям — моно- и многофункциональные; 7) по структуре и количеству — неорганизованные (хаотичные,

вроде газов) и организованные, а также малые и большие, простые и сложные; 8) по направленности — нецелевые (подчиненные естественным законам или инвариантам, вроде минералов, жидкостей, планет; алгоритмические

и имеющие естественно возникшие программы, вроде машин, биологических

организмов и т.п.) и целевые (как человек и общество); 8) по обусловленнсти

— вероятностные (связанные со случайностью) и жестко детерминированые;

и др.

Система и её актуальная среда противостоят друг другу и взаимодействуют, абсолютно изолированных систем не бывает. В силу этого любая система внешне ограничена, в том числе по ресурсам. Кроме того, она всегда

локализована в пространстве и времени, имеет четкие или нечеткие границы

жизнедеятельности. Бесконечно больших и вечных систем не бывает: все истинные системы имеют верхние пределы по количеству компонентов, числу

уровней, сложности, по разнообразию свойств, то есть они всегда внутренне

ограничены.

Рассмотрим простые и сложные системы. Простейшая система состоит

как минимум из двух элементов, компонентов вообще, объединенных в целое

каким-либо отношением, связью, как, например, протон и электрон в атоме

водорода. Но свойства возникшего целого резко отличаются от свойств элементов. Система — это новое, иное качество, не равное сумме свойств ее

элементов (эмерджентность). Формально, сети (вроде ячеистой структуры

Галактики, колонии организмов, сети связи и коммуникаций, расселение людей, размещение производства на территориях, схемы управления и др.), соты (вроде кристаллов, совокупности клеток в тканях организмов, определенные конструкции в технике и в технологических схемах, ритмы и регулярные

процессы и др.), агломерации (вроде кучи песка, груды камней, толпы и др.),

а также хаос и пленумы (непрерывные сущности, вроде вакуума, жидкостей,

газов и др.) можно рассматривать как “вырожденные” случаи истинных систем, обусловленные характером компонентов и, главное, их отношений.

О сложных системах. Важнейшей проблемой науки конца XX века, переходящей в XXI век, является проблема описания и объяснения механизмов

существования, изменения, сохранения свойств, упадка и гибели (катастроф)

сложных систем, особенно обладающих собственным поведением (так назы-159

ваемых “бихевиоральных систем”). К их числу относятся все живые организмы, их сообщества и биосфера в целом, человек и его различные группы и

объединения (народы, государства и др.), а также гибридные (смешанные)

системы вроде биогеосистем, человекомашинных, экономических, экологических и др. систем. Все они — открытые системы, обладающие собственным поведением, основанном на вещественном, энергетическом и информационном обмене со средой. Это — иерархические по структуре образования.

Им присущи прямые и обратные связи, управление, функциональность, самоорганизация, отражение, память, адаптивность, избирательность,

Скачать:PDFTXT

Философия. Учебник для студентов технических ВУЗов читать, Философия. Учебник для студентов технических ВУЗов читать бесплатно, Философия. Учебник для студентов технических ВУЗов читать онлайн