бы глубоко чуждо и вероятно враждебно для обитателя обсуждаемого треугольника. Гауссова кривизна, как величина l/R^R29 для него есть только формально–аналитический способ выражаться, ибо этот житель не сознает ничего вне поверхности, на которой лежит его треугольник, и потому искривления, как такового, заметить не способен. Оценка же происходящего внутренняя, в пределах доступного его прямому наблюдению, и соответственное выражение кривизны в данной точке будет им построено именно вышеуказанным способом: кривизна поверхности есть относительное изменение поверхностной емкости в данной точке, рассчитанное на единицу площади. Физически изменение кривизны от точки к точке могло бы быть установлено опытами с тонким слоем несжимаемой жидкости.
XV
Трехмерное пространство тоже характеризуется в каждой точке мерою кривизны, причем делается быстрый переход, отнюдь геометрически не обоснованный, что как двухмерное пространство может быть искривленным, так же —и трехмерное. Чаще всего обсуждения неевклидовских пространств и ограничиваются областями двухмерными. Когда же подвергается обсуждению и пространство трехмерное, то кривизна его вводится лишь формально–аналитически, как некоторое выражение дифференциальных параметров и не имеет ни геометрической наглядности, ни физической уловимости. Остается неясным, что именно должен сделать физик, хотя бы в мыслимом опыте, чтобы иметь случай так или иначе высказаться о кривизне изучаемого им пространства. Отвлеченно геометрически кривизна пространства должна выражаться искривлением прямейших, т. е. кратчайших, или геодезических, линий. Но, как разъяснено выше, физик, оставаясь со всеми своими инструментами, и даже со всеми своими наглядными представлениями в пределах этого самого трехмерного мира и подвергаясь, быть может, той же деформации, что и исследуемая геодезическая [линия], по–видимому, не имеет способа непосредственно убедиться в искривленности прямейшей. Понятие, которого не хватает при обсуждении неевклидовских пространств, однако, легко может быть построено, если обратиться к предыдущему. Это понятие есть относительное изменение емкости пространства.
Все дело в том, что одно и то же геометрическое тело, при разной кривизне пространства, будет иметь и разную емкость. Изменение этой емкости, отнесенное к единице объема, будет измерять кривизну трехмерного пространства. Более точно к пониманию меры кривизны можно подойти так:
Представим[68 — На полях дата: 1924.11.16.] себе тетраэдр, наполненный несжимаемою жидкостью. Пусть ребра этого тетраэдра гибки, но не растяжимы, и всегда натягиваются, т. е. суть прямейшие; грани же этого тетраэдра будем представлять себе способными растягиваться и сжиматься. Сумма телесных углов этого тетраэдра равна 4π, т. е. четырем прямым телесным углам. Представим себе теперь, что наш тетраэдр перенесен в неевклидовское пространство. Тогда он деформируется: его ребра пройдут по геодезическим, грани станут плоскостями этого нового пространства. Следовательно, телесные углы изменятся, и сумма их уже не будет 2π, а потому изменится и объем тетраэдра. Следовательно, содержащейся в нем жидкости станет теперь либо слишком мало, либо слишком много; этот избыток, понимая его в алгебраическом смысле, зависит от степени деформации тетраэдра, следовательно — от избытка суммы телесных углов деформированного тетраэдра над 4π. Но, с другой стороны, деформация тетраэдра и все вытекающие отсюда последствия зависят от степени искривленности данного пространства, и, следовательно, относительное изменение емкости тетраэдра характеризует кривизну пространства.
Можно высказать, таким образом, теорему, аналогичную теореме Гаусса:
Тут db есть элемент объема, /Г — кривизна трехмерного пространства, 2р — сумма телесных углов тетраэдра, интеграл же распространяется на весь объем тетраэдра. Это значит: избыток суммы телесных углов над 4π, который может быть назван гиперсферическим избытком, накапливается в тетраэдре каждым элементом его объема, но в различной степени; интенсивность этого накопления в каждом месте характеризуется мерой кривизны.
Итак, кривизна пространства тут понимается как удельная емкость пространства данной точки. Написанное соотношение дает по–прежнему:
где К есть среаняя кривизна пространства внутри тетраэдра.
Очевидно:
т. е. средняя кривизна равняется отношению гиперсферического избытка, рассчитанного на единицу объема. Делая тетраэдр все меньше и затягивая его около точки, мы заставим сферический избыток, рассчитанный на единицу объема, стремиться к некоторому пределу, и предел этот есть истинная кривизна в точке, около которой сжимается тетраэдр.
Можно пояснить весь этот прием на частном примере. Перенесем тетраэдр на гиперсферу, так чтобы всеми своими вершинами он расположился в трехмерном многообразии, содержащем четырехмерное содержимое многообразие гиперсферы. —Ясное дело, в нетронутом виде он не совпадет с содержащим гиперсферу многообразием, и для совпадения должен быть искривлен. Тогда ребра тетраэдра пойдут по большим кругам—геодезическим содержащего многообразия гиперсферы; грани совпадут с большими сферами того же содержащего многообразия, а объем деформированного тетраэдра составит часть объема вышеуказанного содержащего многообразия. Получится гиперсферический тетраэдр, аналогичный в двухмерном пространстве сферическому треугольнику. Измеряя телесные углы этого гиперсферического тетраэдра, мы нашли бы сумму их большею, нежели 4π. Разность той и другой величины зависит очевидно от степени искривленности тетраэдра, т. е. от кривизны гиперсферы, или от величины
а кроме того, она зависит от размеров тетраэдра.
В самом деле, тетраэдр, весьма малый сравнительно с площадью гиперсферического содержащего многообразия, и искривлен был бы весьма мало; а совсем малый тетраэдр мог бы считаться не подвергшимся деформации. Итак, если бы мы хотели, обратно, оценить кривизну гиперсферы по величине гиперсферического избытка, то этот последний надлежало бы отнести к единице объема. Таким образом, удельная емкость трехмерного сферического пространства характеризует собою его кривизну.
Подобные же рассуждения можно было бы применить и к пространствам большего», чем три, числа измерений. Тут опять пришлось бы говорить об удельной емкости, но уже не в отношении объемов, а — гипер–объемов и прочих n–мерных содержаний соответственных п–мерных пространств. Удельная емкость могла бы быть принята за характеристику кривизны.
До сих пор кривизна определялась как удельная емкость в отношении несжимаемой жидкости, подобно тому как длина оценивалась в отношении гибкой нерастяжимой нити. Но как нерастяжимая нить не есть единственная возможная наглядная основа для определения и оценки длины, так же и несжимаемая жидкость —не единственный эталон объема, но допускает рядом с собою и многие другие. Тогда, следовательно, и кривизна пространства, сохраняя формальное единство своего определения, как коэффициент емкости, будет получать различные оттенки в зависимости от косвенного дополнения при слове «емкость». Чего именно коэффициент емкости есть кривизна, это в разных случаях будет определяться различно, смотря по данному применению геометрии. Негибкость определения кривизны сделала бы геометрию неприменимою во всех случаях, за исключением того, когда мы имеем дело с несжимаемыми жидкостями. Итак, в одних случаях мы будем говорить об удельной емкости в отношении жидких и сыпучих тел, а в других —о емкости в отношении прочих физических величин и вообще — характеристик. Это может быть электрическая или магнитная масса, теплота, волновая энергия и т. д., и т. д. Мы можем относить удельную емкость пространства к среде, выделяя ее, эту емкость, как особое самостоятельное многообразие, сосуществующее пространству, которому, как таково^, вообще не приписываем ничего, кроме функции распространять — etendre — среду, т. е. быть etendu, и, следовательно, тогда запрещаем непосредственно сочетать с пространством понятие о емкости. Либо многообразие емкостного параметра мы не обособляем от пространства как такового, т. е. не гипостазируем переменной, вообще говоря, характеристики пространства — свойства иметь различную емкость в разных местах —в самостоятельное многообразие. Тогда речь идет только уже о пространстве и физическом факторе, который нами в данном случае рассматривается и в отношении которого определяется удельная емкость, т. е. кривизна пространства.
Когда определение прямизны, или длины, или угла и т. д. опирается на различные физическое наглядности, то, как мы видели, некоторое согласие этих наглядностей держится только внутри той или иной ограниченной действительности и расстраивается за ее пределами — за пределами «круга сходимости». Было бы весьма странно, если бы по какой‑то предустановленной гармонии различные определения прямизны, длины и проч. всюду и всегда не расходились бы между собою; если бы это произошло, то все убеждало бы нас, что лишь по недоразумению эти определения считаются различными, на самом же деле — просто тождественны. В этом смысле правильно сказано, что кривизна, длина, угол и проч., определенные в отношении разных физических наглядностей, суть вообще разное и лишь приблизительно покрывают друг друга.
Конечно, не иначе обстоит и с определением емкости, а следовательно — и кривизны. Емкость пространства данной точки не есть определенная величина, покуда не указано косвенным дополнением о емкости чего именно, какого именно физического деятеля идет речь. Вообще говоря, лишь внутри небольшой области кривизна пространства может быть одною и тою же в отношении нескольких различных деятелей, и было бы счастливой случайностью, если бы такое совпадение обнаружилось далеко за пределами исходной области исследования. Если нам кажется порою, будто такое согласие в отношении нескольких деятелей имеется всюду, то это — самообман: мы перекладываем расхождение удельных емкостей пространств в отношении нескольких деятелей на соответственное расхождение коэффициентов сред, в которых разыгрываются рассматриваемые физические процессы. Среды эти там и тут наделяются совсем разными свойствами, т. с. признаются разными. Иначе говоря, различное поведение пространств в отношении разных деятелей приводится как будто к полному единству, но потому, что отклонение от единства мы гипостазируем в виде особых сред, и притом разных—для разных деятелей; этим‑то средам и вменяется расхождение пространственных емкостей. Разумеется, нельзя помешать такому гипостазированию; но необходимо ясно понимать, что на самом деле преодоления много–пространственности тут вовсе не делается. Так, в прежние времена, чтобы спасти во что бы то ни стало евклидовское пространство, придумывали много разных imponderabilia — невесомых жидкостей, для каждого деятеля особая, и все они отличались особыми свойствами. Затем пестроту этих жидкостей старались уничтожить, сливая их все в единый эфир. Но тогда многообразие поведения должно было вернуться к пространству, и оказалось необходимым, чтобы спасти единство евклидовского пространства, приписание эфиру в отношении разных деятелей разных, друг другу противоречащих, свойств. Наиболее прямой, откровенный и сознательный исход, принимающий геометрию гак, как она в самом деле есть, был бы просто геометрический, т. е. различное поведение разных факторов относить к кривизне пространства, различной в отношении разных физических деятелей.
XVII
Следует для большей ясности дальнейшего пояснить эти соображения частными примерами, впрочем, частными лишь относительно, ибо они охватывают обширнейшие классы физических явлений[69 — Параграф не закончен. —104.].
XVIII[70 — В рукописном варианте параграфы XVIII‑XXIX отсутствуют. Текст печатается по машинописи. —104.]
«Если в случае дискретного (прерывного) многообразия основание определения меры заключается уже в самом понятии этого многообразия, то для непрерывного оно должно прийти извне. Поэтому то реальное, что лежит в основании пространства, или должно составлять дискретное многообразие, или же основания определений меры, должно быть разыскиваемо вне многообразия, в действующих и связывающих его силах». Так высказался об определении пространственных характеристик действующими в пространстве силами в 1854 году Бернгард Риман[71 — Риман Б. О гипотезах, лежащих в основаниях геометрии, —пробная лекция Римана, прочитанная 10 июня 1854 г. в Геттингенском университете. Риман Б. Соч. М.; Л., 1948. С. 279—293,