чрезвычайно осторожным, не смешивая простое употребление слова с действительным использованием понятия, которое оно обычно обозначает. В данном случае сам Наторп говорит нам, да иначе и не могло быть в силу общих предпосылок его теории, что два термина не существуют независимо от связи или отношения между ними, а впервые созидаются этой связью, как единством обособления и объединения. Таким образом, здесь, казалось бы, все обстоит благополучно: не готовое понятие «двух» положено в основу теории числа; напротив, теория эта есть как бы лишь развитие заранее высказанной мысли о рождении терминов и их связей из «чистой мысли» как синтетического единства. И, однако, в действительности это все же не так. Здесь мы снова касаемся основного недостатка логики «марбургской школы», с которым нам в иной связи уже пришлось иметь дело (ср. гл. VII, 3). Учение о суждении как связывании двух (или мно, — гих) содержаний, заменяется в ней учением о суждении как единстве отношения, из себя порождающем само многообразие связуемых терминов. Эта теория совершенно справедлива со своей отрицательной стороны, но неосуществима в своем положительном содержании. Исконное единство (Ursprungseinheit), справедливо требуемое этим учением, не может быть понято как единство отношения. Отношение есть, ведь, отношение между чем?то, и если это что?то не существует вне самого отношения, то, с другой стороны, отношение немыслимо вне соотносящихся членов. Мы имеем строгую соотносительность между понятием отношения и понятием членов отношения, и ни одно из этих двух понятий не может быть признано первичным. Но если так, то, исходя в теории числа из понятия отношения между членом ипротивочленом, мы действительно уже предполагаем эти два члена, вне которых немыслимо и само понятие отношения. Быть может, скажут, что в последнем счете понятие отношения или связи опирается в логике «марбургской школы» на понятие «исконного единства» или «единства изначала» (Ursprungseinheit) и, следовательно, мыслится как строгое единство. И действительно, в этом понятии намечено нечто, способное иметь силу «освобождающего слова» не только в теории числа, но и в теории знания вообще; и то, что это слово по крайней мере вообще высказано или что в философии Канта впервые расслышан недосказанный намек на эту мысль, есть крупнейшее событие в истории теории знания. Но непротиворечивое развитие этого понятия несовместимо с панлогизмом, с учением о самодержавном творчестве чистой мысли или чистого знания. У Когена «изначало» дано в особом «суждении изначала»; но суждение всегда высказывает некоторое частное содержание знания или, по крайней мере, выражает определенный особый элемент бытия (или знания); поэтому у Когена «исконное единство» обречено быть таким особым элементом знания, тогда как оно по его же замыслу должно быть условием всякого знания вообще. Этот недостаток в теории Когена правильно отмечен Наторпом.[168]
Но зато, последовательно блюдя «чистоту» знания, как самодовлеющей мысли, он приходит к выводу, что «исконное единство» совсем не дано мысли как ее основа, а есть лишь ее последняя цель, и что в знании единство есть лишь единство связи, взаимозависимости разделения и соединения[169]. Этим глубокая область, намеченная Когеном, утрачена уже в своей чистоте, и сохранено лишь производное от нее. В знании как таковом (т. е. в том, что его отличает от предшествующего ему начала) чистое единство уже не существует; оно дано лишь в форме единства отношения, т. е. такого единства, которое не может быть источником множественности (и, следовательно, числа), так как оно само соотносительно множественности, т. е. противостоит ей и в этом смысле ее предполагает[170].
Тщетно утверждать, что отношение порождает свои термины: отношение как таковое есть порождаемое, а не порождающее; и дерзость утверждения, возводящего бесплодное «отношение» в достоинство высшего творящего начала, карается тем, что мнимые творения его оказываются незаконнорожденными. Понятие, как член отношения, остается произвольно допущенным, а с ним вместе оказывается предвосхищенным и число. Подлинное и творческое единство достигнуто не там, где члены отношения сведены к самому отношению, ибо этим осуществлено лишь абстрактное единство, вне себя имеющее множественность, а там, где члены отношения вместе с самим отношением сведены к конкретно–единой основе как единству единства и множественности, или единству целого. Не замена «субстанциальных понятий» «функциональными», а усмотрение основы, из которой проистекает соотносительность «субстанциальности» и «функциональности» в понятиях, дает надлежащее и плодотворное выражение высшего единства как последней опорной точки знания.
3. Из сказанного уже ясно, в чем мы усматриваем единственный подлинный источник, из которого может быть выведено понятие числа. На первый взгляд могло бы показаться, что нашим утверждением, что всякое рассуждение, опирающееся на понятия, уже предполагает число и потому в теории числа ведет к ложному кругу, мы отрезаем себе все пути для построения теории числа. И действительно, мы испытываем мало охоты попасть в забавное положение тех математиков и логиков, которые[171] начав с признания укорененности числовых понятий в самих основах логики, развивают затем общую математическую логику, исходя из ряда определений и постулатов, т. е. опираясь на готовую форму понятия, которая, по их же собственному учению, уже предполагает число.
Но какая же вообще теория может обойтись без употребления понятий? И не уничтожается ли этим соображением, вместе с теорией числа, возможность всякой философии вообще, как уяснения первичных начал знания, так как, ведь, всякое философское рассуждение, в качестве совокупности суждений и понятий, очевидно, уже пользуется тем, что оно должно вывести? Однако именно это сходство между положением теории числа и положением всякой «первой философии» вообще указывает, что здесь еще остается открытым какой?то путь. А именно: пользоваться понятиями еще не значит опираться на них. Мы опираемся на употребляемые нами понятия лишь в том случае, если содержание этих понятий входит в состав оснований нашей мысли. Там же, где мы пользуемся какими?либо понятиями лишь как орудиями восхождения к содержаниям, логически им предшествующим, где наши допущения являются лишь ???????? ???? ????, позволяющая нам дойти до ???????? ?? ?????, — употребление понятий не равнозначно логическому использованию их как оснований. Поэтому там, где — как в теории числа и в первой философии вообще — речь идет об уяснении начал, лежащих в основе всяких понятий вообще, — пользование понятиями допустимо при условии, что с помощью понятий, именно через отрицательное их использование, мы возвысимся до области, предшествующей всякому понятию вообще. Эта общая мысль· лежит в основе всего учения об «отрицательном богословии» (???????? ?????????) и была логически развита в теории Николая Кузанского о «docta ignorantia», — как о достижении, через посредство знания, области «неведения», т. е. области, предшествующей понятиям. Лишь в силу того, что через систему понятий может быть намечена предшествующая ей сфера, которая служит первым основанием самих понятий как таковых, возможно свободное от порочного круга философское знание вообще; и тем же путем может и должна быть развита теория числа.
Отсюда ясно, что построить теорию числа значит вывести число из того единственного мыслимого «содержания» (поскольку здесь еще можно говорить о «содержании»), в котором как таковом нет логических, а следовательно, и математических определений — из всеединства как исконного единства. На первый взгляд могло бы показаться, что и здесь мы обречены на ложный круг, ибо всеединство есть во всяком случае нечто единое, и притом единое, очевидно вмещающее в себе множественное; тем самым, казалось бы, числовые понятия молчаливо уже допущены в понятии всеединства. Это было бы действительно так, если бы всеединство было простым сочетанием единства и множественности, или соотносительной связью того и другого. Мы видели, однако, что всеединство должно пониматься как начало, предшествующее как раздроблению на отдельные определенности, так и их связи между собой. Если мы предварительно допустим гипотетически, что определенности А, В, С, каждая в отдельности, суть «единое», а их совокупность/! +В + С есть «множество», то всеединство столь же мало характеризуется в своей собственной природе наличностью в нем отдельных «единиц», как и множественностью этих единиц: оно не тождественно ниА, В, С, взятым в отдельности, ни их совокупности^+В + С, а есть, напротив, то, что мы выразили символом (abc…) —единство как непрерывность без раздельных частей. Что оно как таковое не есть множество, ясно само собой; но не тщетно ли будет отрицать, что оно есть единство? Здесь, однако, нужно различать сдинсгвологическое, которое необходимо противостоит множественности и полагает ее вне себя, от единства металогического, как начала, из себя самого полагающего соотносительные моменты единства и множественности. Отдельная определенность Л есть единое на почве многого: она, как мы знаем, мыслима лишь в связи с ???–Д т. е. как член «комплекса» или системы (= многообразия)^+попА; напротив, всеединство не имеет нйчего вне себя и, следовательно, есть не единое в смысле члена ряда, а единое только в смысле отсутствия множественности. Его единство есть «абсолютное единство», в отличие от «логического» (и тем самым от «математического») единства, которое конституирует единицу в ее противопоставленности как следующей за ней единице, так и самому множеству. Поэтому, исходя из всеединства, мы действительно не предполагаем математических понятий единого и многого, а восходим к тому, в чем, как таковом, этих моментов еще нет и из чего они должны возникнуть. Всеединство не есть единство множественного, а возвышающееся над обоими этими моментами «единство единства и множественности»; и даже эта его характеристика, к которой мы не раз прибегали, выражает не его собственную положительную природу, а лишь его отношение к производным от него моментам; оно есть не определение сущности всеединства, а лишь средство наметить его исключительный, эминентный смысл, его отличие от обычного логического единства.[172]
4. Для того чтобы облегчить и сделать более очевидным это выведение числа из всеединства, мы сознательно покинем на время трудноуловимую область чистой идеальности, которая есть истинная родина числа, и возьмем исходным пунктом нашего размышления логически производное отношение счисляющего сознания к счисляемым объектам. С упреком в психологизме мы просим обождать; дальнейший ход нашего размышления будет состоять именно в устранении всего производного, т. е. логически незаконного, в наших первоначальных допущениях.
Пусть мы перечисляем некоторое множество предметов, т. е. останавливаем внимание на каждом в отдельности и затем переходим от одного к другому. С самого начала ясно, что множество это не должно необходимо быть нам «дано» эмпирически, присутствовать в восприятии: мы ведь можем счислять отсутствующее, как и присутствующее, непредставимое («государства», «эпохи», «добродетели», «теории» и т. п.), как и наглядно данное.
В чем смысл этого исчисления? Очевидно, что, когда мы говорим, намечая отдельные предметы: «первый, второй, третий…» или «один, два, три…», то мы этим не указываем на свойства или особенности каждого предмета в отдельности: все на свете может безразлично быть