начиная с низшей ступени, на которой оно еще есть также определенное количество, как таковое, и кончая высшей, где оно приобретает значение и выражение бесконечной величины в собственном смысле.
Итак, возьмем сначала определенное количество в том отношении, в котором оно дробное число. Такая дробь, например, 2/7 не есть такое определенное количество, как 1, 2, 3 и т. д.;
она, правда, обычное конечное число, однако не непосредственное, как целые числа, а как дробь опосредствованно определенное двумя другими числами, которые суть в отношении друг друга численность и единица, причем и единица есть некоторая численность. Но взятые абстрагирование от этого их более точного определения относительно друг друга и рассматриваемые лишь в соответствии с тем, что в качественном соотношении, в котором они здесь находятся, происходит с ними как с определенными количествами, 2 и 7 помимо этого соотношения суть безразличные определенные количества; но выступая здесь как моменты, друг друга и тем самым некоторого третьего (того определенного количества, которое называется показателем), они имеют значение не как 2 и 7, а лишь со стороны их определенности относительно друг друга. Поэтому можно вместо них с таким же успехом поставить также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они, следовательно, начинают приобретать качественный характер. Если бы 2 и 7 имели значение только как определенные количества, то одно было бы просто 2, а другое 7; 4, 14, б, 21 и т. д. — нечто совершенно иное, чем эти числа, и, поскольку они лишь непосредственные определенные количества, одни из них не могут быть подставлены вместо других. Но поскольку 2 и 7 имеют значение не со стороны той определенности, что они такие определенные количества, их безразличная граница снята; они, стало быть, с этой стороны заключают в себе момент бесконечности, ибо они не только уже не то, что они суть, но сохраняется их количественная определенность, однако как в себе сущая качественная определенность, а именно согласно тому, что они значат в отношении. Они могут быть заменены бесконечным множеством других чисел, так что определенность отношения не изменяет величину дроби.
Но изображение бесконечности в числовой дроби несовершенно еще и потому, что оба члена дроби, 2 и 7, могут быть изъяты из отношения, и тогда они обыкновенные безразличные определенные количества; их соотношение — то, что они суть члены отношения и моменты, — есть для них нечто внешнее и безразличное. И точно так же само их соотношение есть обычное определенное количество, показатель отношения.
Буквы, которыми оперируют в общей арифметике, т. е. ближайшая всеобщность, в которую возводятся числа, не обладают свойством иметь определенную числовую величину; они лишь всеобщие знаки и неопределенные возможности любой определенной величины. Дробь представляется поэтому более подходящим выражением бесконечного, так как а и Ь, изъятые из их соотношения, остаются неопределенными и не имеют особой им принадлежащей величины, даже будучи отделены друг от друга. — Однако, хотя эти буквы положены как неопределенные величины, их смысл все же состоит в том, что они какое-то конечное определенное количество. Так как они хотя и всеобщее представление, но лишь об определенном числе, то для них одинаково безразлично то, что они находятся в отношении, и вне этого отношения они сохраняют то же самое значение.
Если присмотримся еще пристальнее к тому, что имеется в отношении, то увидим, что ему присущи оба определения: оно, во-первых, определенное количество, но последнее есть, во-вторых, не непосредственное определенное количество, а такое, которое содержит качественную противоположность; в то же время оно остается в отношении тем определенным, безразличным квантом благодаря тому, что оно возвращается в себя из «своего инобытия, из противоположности и, следовательно, есть также нечто бесконечное. Эти два определения, развитые в их отличии друг от друга, представляются в следующей общеизвестной форме.
2 1 Дробь — может быть выражена как 0,285714…., как
1 + а + а2 + а3 и т. д. Таким образом, она дана как бесконечный ряд; сама дробь называется суммой или конечным выражением этого ряда. Если сравним между собой эти два выражения, то окажется, что одно, бесконечный ряд, представляет ее уже не как отношение, а с той стороны, что она определенное количество как множество таких количеств, которые присоединяются одно к другому, — как некоторая численность. — Что величины, которые должны составить дробь как некую численность, сами в свою очередь состоят из десятичных дробей, стало быть, сами состоят из отношений, — это не имеет здесь значения; ибо это обстоятельство касается особого рода единицы, этих величин, а не их, поскольку они конституируют численность; ведь и состоящее из нескольких цифр целое число десятеричной системы также считается по своей сути численностью, и не обращается внимания на то, что она состоит из произведений некоторых чисел на число десять и его степени. Не важно здесь и то, что имеются другие 2 дроби, нежели взятая в качестве примера дробь , которые, будучи обращены в десятичные дроби, не дают бесконечного ряда; однако каждая из них может быть изображена как такой ряд в числовой системе другой единицы.
Так как в бесконечном ряде, который должен представлять дробь как численность, исчезает та ее сторона, что она отношение, то исчезает и та сторона, что она, как показано выше, в самой себе имеет бесконечность. Но эта бесконечность вошла другим способом, а именно сам ряд бесконечен.
Какова эта бесконечность ряда — это явствует само собой; она дурная бесконечность прогресса. Ряд содержит и представляет следующее противоречие: нечто, будучи отношением и имея внутри себя качественную природу, изображается как лишенное отношений, просто как определенное количество, как численность. Следствием этого [противоречия] оказывается то, что в численности, выражаемой в ряде, всегда чего-то недостает, так что для того, чтобы достигнуть требуемой определенности, всегда нужно выходить за пределы того, что положено. Закон этого продвижения известен; он заключается в определении определенного количества, содержащемся в дроби, и в природе формы, в которой это определение должно быть выражено. Можно, правда, продолжая ряд, сделать численность столь точной, сколь это нужно. Однако изображение [численности ] посредством ряда всегда остается лишь долженствованием; оно обременено неким потусторонним, которое не может быть снято, так как попытка выразить в виде численности то, что основано на качественной определенности, есть постоянное противоречие.
В этом бесконечном ряде действительно имеется та неточность, которая в истинном математическом бесконечном встречается лишь как видимость. Не следует смешивать эти два вида математического бесконечного, точно так же как не следует смешивать оба вида философского бесконечного. Для изображения истинного математического бесконечного сначала пользовались формой ряда, и в новейшее время она опять была вызвана к жизни. Но она для него не необходима. Напротив, как станет ясно из последующего, бесконечное бесконечного ряда сущностно отличается от истинного математического бесконечного. Скорее он уступает [в этом отношении] даже такому выражению, как дробь.
А именно бесконечный ряд содержит дурную бесконечность, так как то, что он должен выразить, остается долженствованием, а то, что он выражает, обременено неисчезающим потусторонним и отличается от того, что должно быть выражено. Он бесконечен не из-за положенных членов, а потому, что они неполны, потому что иное, сущностно принадлежащее к ним, находится по ту сторону их; то, что в нем есть, хотя бы положенных членов было сколь угодно много, есть лишь конечное в собственном смысле этого слова, положенное как конечное, т. е. как такое, что не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммой такого ряда, безупречно; оно полностью содержит то значение, которого ряд только ищет; потустороннее возвращено из своего бегства; то, что этот ряд есть, и то, чем он должен быть, уже не разделено, а есть одно и то же.
Различает их, если говорить точнее, то, что в бесконечном ряде отрицательное находится вне его членов, которые имеются налицо, так как они признаются лишь частями численности. Напротив, в конечном выражении, которое есть отношение, отрицательное имманентно как определяемость сторон отношения друг другом, которая есть возвращение в себя, соотносящееся с собой единство как отрицание отрицания (обе стороны отношения даны лишь как моменты), и, следовательно, имеет внутри себя определение бесконечности. — Таким образом, обычно так называемая сумма, — или -,— есть на самом деле отношение, и / 1 — а это так называемое конечное выражение есть истинно бесконечное выражение. Бесконечный ряд есть на самом деле скорее сумма; его цель — то, что в себе есть отношение, представить в форме некоторой суммы, и имеющиеся налицо члены ряда даны не как члены отношения, а как члены агрегата. Он, далее, есть скорее конечное выражение, ибо он несовершенный агрегат и остается по своему существу чем-то недостаточным. По тому, что в нем имеется, он определенный квант, но в то же время меньший, чем тот, которым он должен быть; и то, чего ему недостает, также есть определенный квант; эта недостающая часть есть на самом деле то, что называется в ряде бесконечным только с той формальной стороны, что она есть нечто недостающее, некоторое небытие; по своему содержанию она конечное определенное количество. Только то, что налично в ряде, совокупно с тем, чего ему недостает, составляет дробь, определенный квант, которым ряд также должен быть, но которым он не в состоянии быть. — Слово «бесконечное» также и в сочетании «бесконечный ряд» обычно кажется мнению чем-то возвышенным и величественным; это некоторого рода суеверие, суеверие рассудка. Мы видели, что оно сводится скорее к определению недостаточности.
Можно еще заметить, что то, что имеются такие бесконечные ряды, которые не суммируются, — это в отношении формы ряда вообще обстоятельство внешнее и случайное. Ряды эти содержат более высокий вид бесконечности, чем суммирующиеся ряды, а именно несоизмеримость, или, иначе говоря, невозможность представить содержащееся в них количественное отношение как определенное количество, хотя бы в виде дроби. Но свойственная им форма ряда, как таковая, содержит то же самое определение дурной бесконечности, какое присуще суммирующемся ряду.
Только что указанная на примере дроби и ее ряда превратность выражения имеет место и тогда, когда математическое бесконечное — а именно не только что названное, а истинное — называют относительным бесконечным, обычное же метафизическое, под которым разумеют абстрактное, дурное бесконечное, абсолютным. На самом же деле это метафизическое бесконечное скорее лишь относительно, ибо выражаемое им отрицание противоположно границе лишь в том смысле, что граница остается существовать вне