есть двучлен; всякое дальнейшее умножение числа членов есть простое повторение того же определения и потому нечто пустое[27 — Лишь формализмом той общности, на которую необходимо притязает анализ, объясняется то, что вместо того, чтобы начать развитие степени с (а+b), его начинают с (а+b+c…), подобно тому, как это делается и во многих других случаях; эта форма, так сказать, соблюдается лишь для кокетничанья формою общности. Двучленом исчерпывается суть дела; через его развитие получается закон, истинная же общность и есть закон, а не то пустое повторение закона, которое единственно и проявляется в этом а+b+с+d….]. Тем самым единственно достигается качественная определенность членов, которая получается через потенцирование принимаемого за сумму корня, и эта определенность заключается единственно в изменении через потенцирование. Эти члены суть поэтому всецело функции возвышения в степень и степени. А это изображение числа, как суммы и множества таких членов, которые суть функции возвышения в степень, и тем самым интерес найти форму таких функций и далее сумму множества таких членов, поскольку это нахождение должно зависеть только от сказанной формы, и составляют, как известно, особое учение о рядах. Но при этом существенно отличать еще дальнейший интерес, именно, отношение самих лежащих в основе величин, — определенность которых, поскольку они суть некоторый комплекс, т. е. в данном случае уравнение, заключает в себе степень, — к функциям их возвышения в степень. Это отношение, понимаемое совершенно отвлеченно от вышеназванного интереса суммы, выяснится, как тот исходный пункт, который единственно вытекает из действительной науки и указывается дифференциальным исчислением.
Нужно, однако, прибавить к сказанному или, правильнее, удалить из него еще одно заключающееся в нем определение. Было именно сказано, что на переменную величину, в определение которой входит степень, следует смотреть внутри ее самой, как на сумму и притом как на систему членов, поскольку они суть функции возвышения в степень, причем также и корень должен рассматриваться, как сумма, и в своей простой определенной форме, как двучлен; x=(у+z)=(y+nyz+…). Это изображение развития степени, т. е. получения функции возвышения в степень, исходит от суммы, как таковой; но здесь дело идет не о сумме, как таковой, равно как не о происходящем из нее ряде, а от суммы берется только отношение. Отношение величин, как таковое, есть то, что, с одной стороны, остается после того, как отвлекается от plus некоторой суммы, как таковой; и что, с другой стороны, необходимо для нахождения развития функций степени. Но это отношение определяется уже тем, что здесь предмет, уравнение у=ах, есть уже комплекс многих (переменных) величин, содержащий их степенное определение. В этом комплексе каждый из этих членов положен просто в отношении к другим со значением, как можно выразиться, plus в нем самом, как функция прочих величин; свойство членов быть функциями один другого сообщает им это определение plus’a, но тем самым чего-то совершенно неопределенного, что не есть ни приращение, ни инкремент и т. д. Но и эту совершенно отвлеченную точку зрения мы можем оставить в стороне; можно просто остановиться на том, что поскольку переменные величины даны в уравнении, как функции одна другой, так что эта определенность содержит в себе отношение степеней, то и функции возвышения в степень каждой из них сравниваются между собою, причем вторые функции определяются только через самое возвышение в степень. Первоначально можно считать лишь произвольным или возможным сведение степенного уравнения переменных величин к отношению функции его развития; лишь дальнейшая цель, польза, употребление указывают на пригодность такого преобразования; оно обусловливается исключительно своею полезностью. Если ранее исходили от изображения этих степенных определений некоторой величины, принимаемой за порозненную внутри себя сумму, то это служило отчасти лишь для указания того, какого вида эти функции, отчасти способа их нахождения.
Мы подошли, таким образом, к обычному аналитическому развитию, понимаемому для цели дифференциального исчисления так, что переменной величине дается приращение dx, i, и затем степень двучлена развертывается в соответствующий ей ряд. Но так называемое приращение должно быть не определенным количеством, а лишь формою, все значение которой состоит в том, чтобы быть вспомогательным средством раскрытия ряда; то, к чему по признанию, определеннее всего выраженному Эйлером и Лагранжем, а также подразумеваемому вышеупомянутым представлением о пределе, стремятся в этом случае, суть лишь получающиеся при этом степенные определения переменных величин, так называемые коэффициенты, хотя и присущие приращению и его степеням, составляющим порядок ряда и причастным различным коэффициентам. При этом следует заметить, что хотя приращение, не имеющее определенного количества, принимается лишь для целей развития, но было бы всего уместнее обозначить его единицею (1), так как она постоянно повторяется в развитии, только как множитель, причем именно множитель единица достигает той цели, что через приращение не получается никакой количественной определенности и изменения; между тем как dx, сопровождаемый ложным представлением некоторой количественной разности, и другие знаки, например i, имеющие здесь бесполезную видимость общности, всегда сопровождаются показностью и притязанием какого-то определенного количества и его степеней; каковое притязание вызывает затруднения отбросить их и пренебречь ими. Для сохранения формы ряда, развернутого по степеням обозначения показателей, последние как знаки (indices) могли бы с таким же удобством быть присоединяемы и к единице. Но сверх того должно отвлечь и от ряда, и от определения коэффициентов по месту, занимаемому ими в ряду, так как отношение между всеми ими одно и то же; вторая функция выводится из первой точно так же, как первая из первоначальной функции, и для той, которая считается второю, первая производная функция есть опять-таки первоначальная. По существу же интерес направляется не на ряд, но единственно на получаемое через развитие степенное определение в его отношении к ближайшей к нему величине. Поэтому вместо того, чтобы считать это определение коэффициентом первого члена развития, было бы предпочтительнее, так как каждый член есть первый относительно следующих за ним членов ряда, считать такую степень степенью приращения, или поскольку самые ряды не имеют здесь значения, употреблять выражение производная степенная функция или, как сказано выше, функция возвышения величины в степень; причем признается за известное, каким путем совершается вывод, как заключенное внутри некоторой степени развитие.
Но если в этой части аналитики собственно математическое начало есть не что иное, как нахождение функции, определенной через степенное развитие, то является дальнейший вопрос, что должно предпринять с полученным таким образом отношением, в чем его применение и употребление, или, на самом деле, для какой цели отыскиваются такие функции. Дифференциальное исчисление вызвало к себе большой интерес через нахождение таких отношений между конкретными предметами, которые сводятся к этим отвлеченным аналитическим отношениям. Относительно же приложимости оказывается ближайшим образом по самой природе вещей, не касаясь покуда еще самих случаев приложения, при помощи вышеуказанного вида моментов, степени, само собою следующее. Развитие степенных величин, через которое получаются функции их возвышения в степень, содержит в себе, не касаясь ближайшего определения, прежде всего вообще понижение величины на ближайшую низшую степень. Приложение этого действия имеет, стало быть, место к таким предметам, коим также свойственно такое различие степенных определений. Если мы рефлектируем, например, над пространственною определенностью, то мы находим, что она содержит в себе три измерения, которые мы для того, чтобы отличить их от отвлеченных различий высоты, длины и ширины, можем обозначить конкретно, как линию, поверхность и целостное пространство; и поскольку они взяты в их простейших формах и в отношении к самоопределению, а тем самым к аналитическим протяжениям, мы получаем прямую линию, плоскостную поверхность (и ее же как квадрат) и куб. Прямая линия имеет эмпирическое определенное количество, но уже в плоскости выступает качественное определение степени; более близкие (к прямой линии) модификации, например, что то же самое имеет место относительно кривой линии, мы можем, поскольку речь идет здесь о различии только вообще, оставить в стороне. Отсюда возникает потребность перехода от высшего степенного определения к низшему и наоборот, поскольку, например, линейные определения должны быть выведены из данных уравнений поверхностей и т. п. или наоборот. Далее движение, рассматриваемое в зависимости от отношения величины пройденного пространства и соответствующего протекшего времени, проявляется в различных определениях ложно равномерного, равномерно ускорительного, перемежающегося равномерно ускорительного и равномерно укоснительного — возвращающегося в себя — движения; поскольку эти различные виды движения выражаются в отношениях величины их моментов, пространства и времени, для них получаются уравнения, содержащие различные степенные определения, и если может оказаться надобность определить некоторый вид движения или те пространственные величины, с которыми он связан, посредством другого его вида, то это действие также приводит к переходу от степенной функции к высшей или низшей, чем она. Примерами этих двух предметов можно удовольствоваться для той цели, для которой они приведены.
Видимость случайности, представляемой дифференциальным исчислением в его приложениях, может быть упрощена уже сознанием природы той области, в которой имеет место это приложение, и своеобразных потребности и условии этого приложения. Но теперь является нужда узнать внутри самой этой области, между какими частями предметов математической задачи имеет место такое отношение, которое своеобразно положено дифференциальным исчислением. Должно уже предварительно заметить, что здесь нужно иметь в виду двоякое отношение. Действие понижения степени уравнения, рассматриваемое с точки зрения производных функций его переменных величин, дает результат, который в нем самом есть поистине уже не уравнение, но отношение; это отношение есть предмет собственно дифференциального исчисления. Ho тем самым, во-вторых, дается отношение высшего степенного определения (первоначального уравнения) к низшему (к производной функции). Это второе отношение мы покуда оставим в стороне; оно окажется собственным предметом интегрального исчисления.
Рассмотрим прежде всего первое отношение и возьмем из так называемого приложения для решающего определения того момента, в котором заключается интерес действия, простейший пример кривой, определяемой уравнением второй степени. Как известно, через уравнение непосредственно дается в степенном определении отношение координат. Следствиями основного определения служат определения других прямых линий, связанных с координатами, касательной, подкасательной, нормальной и т. п. Но уравнения, связующие эти линии с координатами, суть линейные уравнения; те целые, как части которых определяют эти линии, суть прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степенное определение, к этим линейным уравнениям есть вышеуказанный переход от первоначальной функции, т. е. от уравнения, к производной функции, которая есть отношение и притом отношение между известными, содержащимися в кривой линиями. Связь между отношениями этих линий и уравнением кривой и есть искомое.
Не безынтересно привести здесь только ту историческую справку, что первые исследователи умели решать эту задачу лишь совершенно эмпирически, не отдавая себе отчета в совершенно внешнем характере действия. Я ограничусь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et