Скачать:PDFTXT
Учение о бытии

geom., в которых он решает задачи высшей геометрии по методу неделимых (частей), отличающемуся ближайшим образом от особенностей дифференциального исчисления, он сообщает, «так как на том настаивают его друзья (lect. X)», свой способ определения касательных. Нужно прочесть у него самого, как решает он эту задачу, чтобы составить должное представление о совершенно внешнем правиле этого способа, совершенно в том же стиле, как излагалось ранее в учебниках арифметики тройное правило. Он чертит те маленькие линии, которые впоследствии были названы приращениями в характеристическом треугольнике кривой линии, и затем предписывает в виде простого правила отбросить, как излишние, члены, получающиеся путем развития уравнений, как степени или произведения этих приращений (etenim isti termini nihilum valebunt), a также и те члены, которые содержат определенные величины лишь из первоначального уравнения (то, что впоследствии достигалось вычитанием первоначального уравнения из него же с приращениями), и напоследок вставить вместо приращения ординаты самую ординату и вместо приращение абсциссы — подкасательную. Невозможно, если позволительно так выразиться, изложить способ более педантично; это подстановление основано на принимаемой обычным методом дифференциального исчисления для определения касательной пропорциональности приращений ординаты и абсциссы с ординатою и подкасательною; в правиле Барроу это допущение является во всей своей наивной наготе. Простой способ определения подкасательной был уже найден; способы Роберваля и Ферма сводятся к подобному же; метод последнего находить наибольшие и наименьшие значения функций исходит из того же основания и того же предела. Математическою страстью того времени было изобретать так называемые методы, т. е. правила этого рода, и притом держат их в тайне, что было не только легко, но даже в известном отношении нужно и нужно именно потому, что было легко, именно потому, что изобретатели находили лишь внешнее эмпирическое правило, а не метод, т. е. не нечто, выведенное из признанных начал. Такие так называемые методы Лейбниц воспринял от своего времени, а также и Ньютон, и последний принял их непосредственно от своего учителя; они проложили новые пути в науке через обобщение их формы и приложимости, но при этом чувствовали потребность освободить прием от вида совершенно внешнего правила и дать ему потребное оправдание.

При ближайшем анализе метода истинный ход действия оказывается таков. Во-первых, степенные определения (само собою разумеется переменных величин), содержащиеся в уравнении, приводятся к их первым производным функциям. Тем самым изменяется значение членов уравнения; уравнения уже более не остается, но возникает лишь отношение между первою производною функциею одной переменной величины и такой же функциею другой; вместо рх=у получается р:2у, вместо 2ах — х=у получается (а — х):у, что впоследствии и было обозначено, как отношение dx/dy. Это уравнение есть уравнение кривой, а это отношение, вполне зависимое от уравнения и выведенное из последнего (как указано выше, по простому правилу), есть, напротив, линейное, равное отношению между линиями; р:2у или (а — х):у суть сами отношения прямых линий кривой, координат и параметра; но тем самым знание еще не подвигается вперед. Интерес состоит в том, чтобы узнать и о других связанных с кривою линиях, что им свойственно это отношение, найти равенство двух отношений. Поэтому, во-вторых, является вопрос, какие прямые линии, определенные свойствами кривой, находятся в таком отношении. Но это есть то, что было узнано уже ранее, а именно, что такое этим путем полученное отношение есть отношение ординаты к подкасательной. Старые математики нашли это остроумным геометрическим способом; то, что было открыто новыми исследователями, есть эмпирический прием, состоящий в выводе такого уравнения прямой, из которого было бы видно то первое отношение, о коем уже известно, что оно равно отношению, содержащему линии, в данном случае, подкасательные, подлежащие определению. Этот вывод уравнения понимался и исполнялся отчасти методически, путем дифференцирования, отчасти же были изобретены воображаемые приращения координат и воображаемый образованный из них и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного через понижение степени уравнения, с отношением ординаты и подкасательной, оказалась полученною не эмпирически, как уже давно знакомая, но путем доказательства. Однако, старое знакомство проявляется вообще и, несомненно, в том, что вышеуказанная форма правила оказывается единственным поводом и относительным оправданием к принятию характеристического треугольника и упомянутой пропорциональности.

Лагранж отбросил эту симуляцию и вступил на истинно научный путь; его метод привел к правильному взгляду, так как этот метод состоит в том, чтобы разделить оба перехода, потребные для решения задачи, и каждый из них разработать и доказать для себя. Одна часть этого решения — остающаяся ближайшим образом при примере элементарной задачи нахождения подкасательной — теоретическая или общая часть, именно нахождение первой функции из данного уравнения кривой, регулируется сама для себя; она дает линейное отношение, т. е. отношение прямых линий, входящих в систему определения кривой. Другая часть решения есть нахождение тех связанных с кривою линий, которые состоят в таком отношении. Это достигается прямым путем (Théorie des fonct. anal. p. II chap. II), т. е. без характеристического треугольника, без того, чтобы прибегать к бесконечно малым дугам, ординатам и абсциссам и давать им определения dy и dx, т. е. членов этого отношения, и вместе с тем без того, чтобы непосредственно установлять их равенство с ординатою и подкасательною. Таково, говоря мимоходом, основное положение аналитической геометрии, которое исходит от координат или, чтó то же самое, механики — от параллелограмма сил, и именно потому не испытывает потребности задавать себе труд доказательства. Подкасательная полагается стороною треугольника, другие стороны которого суть ордината и соответствующая ей касательная. Последняя, как прямая линия, имеет своим уравнением р=aq (прибавление +b бесполезно для определения и обусловливается лишь любовью к обобщению); определение отношения p/q есть а, коэффициент q, который есть относительно первая функция уравнения, вообще же должно быть рассматриваемо, лишь как а=p/q, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к кривой. Поскольку затем берется первая функция уравнения кривой, она (функция) есть также определение некоторой прямой линии; поскольку далее одна координата р первой прямой линии и у, ордината кривой, отожествляются, т. е. точка, в которой она, принимаемая за касательную, прикасается к кривой, есть равным образом исходная точка прямой, определяемой первою функциею кривой, то вопрос сводится к доказательству, что эта вторая прямая линия совпадает с первою, т. е. есть касательная; или выражаясь алгебраически, что если y=fx, a p=Fq и если у=р, т. е. fx=Fx, то f’x=F’q. A что принимаемая за касательную прямая и та прямая, которая определяется из уравнения его первою функциею, совпадают, что вторая прямая есть также касательная, — это показывается при помощи приращения i абсциссы и определяемого через развитие функции приращения ординаты. Здесь, следовательно, опять-таки выступает пресловутое приращение; но так как оно вводится для только что объясненной надобности, то и развитие функции при его помощи должно, конечно, считаться чем-то другим сравнительно с ранее упомянутым употреблением приращения для нахождения дифференциального уравнения и для характеристического треугольника. Допускаемое здесь употребление правомерно и необходимо; оно входит в круг геометрии, так как оно служит для геометрического определения касательной, как таковой, которое не может между касательною и кривою, с коею первая имеет общую точку, найти никакой прямой линии, также проходящей через эту точку. Ибо этим определением качество касательной и не-касательной сводится к различению величины, и касательною оказывается та линия, на которую с точки зрения лишь определения приходится наименьшая величина (die grössere Kleinheit). Эта по-видимому лишь относительно наименьшая величина не содержит в себе ничего эмпирического, т. е. зависящего от определенного количества, как такового, она положена качественно самым свойством формулы, если только различие момента, от которого зависит сравниваемая величина, есть различие степени; если последняя объемлет i и i, и если i, долженствующее в конце концов означать число, изображается дробью, то iв себе и для себя менее, чем i, так что даже представление любой величины, которую можно приписать i, здесь излишне и даже неуместно. Поэтому и доказательство наименьшей величины не имеет ничего общего с бесконечно малым, которое тем самым здесь совершенно не выступает, Просто ради его красоты и ради ныне забываемой, но вполне заслуженной славы, я хочу здесь сказать о декартовом методе касательных; он имеет впрочем отношение к природе уравнений, о которых нужно сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором искомое линейное определение также находится путем той же производной функции, в своей и в других отношениях оказавшейся столь плодотворною геометрии (liv. II. 357 и сл. Oeuvres compl. ed. Cousin t. V), в которой он научил великим основоположениям касательно природы уравнений и их геометрического построения, а с тем вместе и приложению анализа к геометрии. Проблема имеет у него форму задачи — провести прямые линии перпендикулярно к любому месту кривой, чем определяются подкасательные и т. п.; понятно то удовлетворение, которое он выражает по поводу своего открытия, касавшегося предмета господствовавшего в то время общего научного интереса, открытия, которое столь геометрично и тем самым столь возвышается над вышеупомянутыми методами простых правил его соперников: «я осмеливаюсь сказать, что эта самая полезная и самая общая из геометрических задач, не только из тех, которые я знаю, но даже из тех, которые я когда-либо желал знать в геометрии». Он основывает решение ее на аналитических уравнениях прямоугольного треугольника, образуемого ординатою точки кривой, в которой должна быть перпендикулярно проведена требуемая прямая линия, затем самою этою линиею, нормальною, и, в третьих, частью оси, отрезаемой ординатою и нормальною, поднормальною. Из известного уравнения кривой подставляется за сим в уравнение треугольника значение или ординаты или абсциссы так, что получается уравнение второй степени (причем Декарт показывает, как к тому же можно свести и кривые, уравнения коих содержат высшие степени), в котором дана лишь одна из переменных величин и притом в квадрате и в первой степени; квадратное уравнение, которое прежде всего является так называемым нечистым. За сим Декарт рассуждает, что если представить себе одну точку кривой точкою пересечения ее с кругом, то этот круг должен пересечь кривую еще в одной точке, и тем самым должны получиться для двух происходящих таким образом и неравных х два уравнения с теми же постоянными величинами и одинаковой формы, — или же лишь одно уравнение с разными значениями х. Но уравнения могут быть сделаны одним для одного треугольника, в котором гипотенуза есть перпендикулярная к кривой, нормальная, что представляется так, что обе точки пересечения становятся совпадающими, если круг становится касающимся к кривой. Но при этом устраняется и неравенство корня х или у квадратного уравнения. В квадратном же уравнении с двумя равными корнями коэффициент члена, содержащего неизвестное

Скачать:PDFTXT

Учение о бытии Гегель читать, Учение о бытии Гегель читать бесплатно, Учение о бытии Гегель читать онлайн