Сайт продается, подробности: whatsapp telegram
Скачать:TXTPDF
Собрание сочинений Маркса и Энгельса. Том 20

отрицательны; если основание меньше единицы, то имеет место обратное.

Таким образом, если всякое число содержит в себе единицу, поскольку оно составляется из одних лишь сложенных друг с другом единиц, то единица, в свою очередь, содержит в себе все другие числа. Не только в возможности, поскольку мы любое число можем построить из одних только единиц, но и в действительности, поскольку единица является определенной степенью любого другого числа. Однако те самые математики, которые непринужденнейшим образом вводят, где им это удобно, в свои выкладки х° = 1 или же дробь, числитель и знаменатель которой равны и которая тоже, значит, представляет единицу, — математики, которые, следовательно, применяют математическим образом содержащуюся в единице множественность, морщат нос и строят гримасы, когда им говорят в общей форме, что единица и множественность являются нераздельными, проникающими друг друга понятиями и что множественность так же содержится в единице, как и единица в множественности. А в какой мере дело обстоит именно так, это мы видим, лишь только мы покидаем область чистых чисел. Уже при измерении линий, площадей и объемов обнаруживается, что мы можем принять за единицу любую величину соответствующего порядка, и то же самое относится к измерению времени, веса, движения и т. д. Для измерения клеток миллиметры и миллиграммы еще слишком велики, для измерения звездных расстояний или скорости света километр уже неудобен из-за малой величины, как мал килограмм для измерения масс планет, а тем более Солнца. Здесь с очевидностью обнаруживается, какое многообразие и какая множественность содержатся в столь простом на первый взгляд понятии единицы.

* * *

Оттого что нуль есть отрицание всякого определенного количества, он не лишен содержания. Наоборот, пуль имеет весьма определенное содержание. Как граница между всеми положительными и отрицательными величинами, как единственное действительно нейтральное число, не могущее быть ни положительным, ни отрицательным, он не только представляет собой весьма определенное число, но и по своей природе важнее всех других, ограничиваемых им чисел. Действительно, нуль богаче содержанием, чем всякое иное число. Прибавленный к любому числу справа, он в нашей системе счисления удесятеряет данное число. Вместо нуля для этой цели можно было бы применить любой другой знак, но лишь при том условии, чтобы этот знак, взятый сам по себе, означал нуль, был бы равен нулю. Таким образом, в самой природе нуля заключено то, что он находит такое применение и что только он один может получить такое применение. Нуль уничтожает всякое другое число, на которое его умножают; если его сделать делителем или делимым по отношению к любому другому числу, то это число превращается в первом случае в бесконечно большое, а во втором случае — в бесконечно малое; нуль есть единственное число, находящееся в бесконечном отношении к любому другому числу. Дробь % может выражать любое число между —оо и +оо и представляет в каждом случае некоторую действительную величину. — Действительное содержание какого-нибудь уравнения обнаруживается со всей ясностью лишь тогда, когда все члены его перенесены на одну сторону и уравнение тем самым приравнено к нулю, как это имеет место уже в квадратных уравнениях и как это является почти общим правилом в высшей алгебре. Функцию F(x,y) = 0 можно затем приравнять также к некоторому z, чтобы дифференцировать этот z, хотя он = 0, как обыкновенную зависимую переменную и получить его частную производную.

Но ничто от каждого отдельного определенного количества само имеет еще количественное определение, и лишь поэтому можно оперировать нулем. Те самые математики, которые без всякого стеснения оперируют с нулем вышеуказанным образом, т. е. оперируют с ним как с определенным количественным представлением, приводя его в количественные отношения к другим количественным представлениям, — поднимают страшный вопль, когда находят это у Гегеля в такой обобщенной форме: ничто от некоторого нечто есть некое определенное ничто.

Перейдем теперь к (аналитической) геометрии. Здесь нуль — определенная точка, начиная от которой на данной прямой в одном направлении отсчитываются положительные величины, а в противоположном — отрицательные. Таким образом, здесь нулевая точка не только так же важна, как любая точка, обозначаемая при помощи некоторой положительной или отрицательной величины, но и гораздо важнее всех их; это — та точка, от которой все они зависят, к которой все они относятся, которой они все определяются. Во многих случаях она может браться даже совершенно произвольным образом. Но раз она взята, она остается средоточием всей операции, часто даже определяет направление той линии, на которую наносятся другие точки, конечные точки абсцисс. Если, например, чтобы получить уравнение круга, мы примем любую точку периферии за нулевую точку, то линия абсцисс должна проходить через центр круга. Все это находит свое применение также и в механике, где точно так же при вычислении движений принятая в том или другом случае нулевая точка образует главный пункт и стержень всей операции. Нулевая точка термометра — это вполне определенная нижняя граница температурного отрезка, разделяемого на произвольное число градусов и служащего благодаря этому мерой температур как внутри самого себя, так и более высоких или более низких температур. Таким образом, и здесь нулевая точка является весьма существенной точкой. И даже абсолютный нуль термометра представляет отнюдь не чистое абстрактное отрицание, а очень определенное состояние материи — именно ту границу, у которой исчезает последний след самостоятельного движения молекул и материя действует только как масса.

Итак, где бы мы ни встречались с нулем, он повсюду представляет нечто весьма определенное, и его практическое применение в геометрии, механике и т. д. доказывает, что в качестве границы он важнее, чем все действительные, ограничиваемые им величины.

* * *

Нулевые степени. Их значение в логарифмическом ряду:

0    1    2    3 log

100, 101, 102, 103. Все переменные проходят где-нибудь через значение единицы; таким образом, также и постоянная в переменной степени (О) равняется единице, когда х = 0. Выражение a° = 1 не означает ничего другого, кроме того, что единица берется в ее связи с другими членами ряда степеней о. х/)[457], в противном же случае — нет. Отсюда следует, что и единица, как бы она ни казалась тождественной самой себе, заключает в себе бесконечное многообразие, ибо она может быть нулевой степенью любого другого числа; а что это многообразие отнюдь не воображаемое, обнаруживается всякий раз, когда единица рассматривается как определенная единица, как один из переменных результатов какого-нибудь процесса (как мгновенная величина или форма некоторой переменной) в связи с этим процессом.

* * *

ледним; взятые вне этого отношения, сами по себе, они носят чисто воображаемый характер. В тригонометрии и в аналитической геометрии, а также в построенных на них отраслях высшей математики, они выражают определенное направление движения, противоположное положительному направлению. Но синусы и тангенсы круга можно с одинаковым успехом отсчитывать как с первого, так и с четвертого квадранта и, таким образом, можно прямо заменить плюс на минус, и наоборот. Точно так же в аналитической геометрии можно отсчитывать абсциссы в круге, начиная либо с периферии, либо с центра, и вообще у всех кривых абсциссы можно отсчитывать от кривой в направлении, обозначаемом обыкновенно знаком минус, [или] в любом другом направлении, и тем не менее мы получаем правильное рациональное уравнение кривой. Здесь плюс существует только как необходимое дополнение минуса, и наоборот. Но алгебраическая абстракция рассматривает отрицательные величины как действительные, самостоятельные величины, имеющие значение также и вне отношения к некоторой большей, положительной величине.

* * *

Математика. Обыкновенному человеческому рассудку кажется нелепостью разлагать некоторую определенную величину, например бином, в бесконечный ряд, т. е. в нечто неопределенное. Но далеко ли ушли бы мы без бесконечных рядов или без теоремы о биноме?

* * *

Асимптоты. Геометрия начинает с открытия, что прямое и кривое суть абсолютные противоположности, что прямое полностью не выразимо в кривом, а кривое — в прямом, что они несоизмеримы между собой. И тем не менее уже вычисление круга возможно лишь в том случае, если выразить его периферию в виде прямых линий. В случае же кривых с асимптотами прямое совершенно расплывается в кривое и кривое в прямое, — точно так же как расплывается представление о параллелизме: линии не параллельны, они непрерывно приближаются друг к другу и все-таки никогда не сходятся. Ветвь кривой становится все прямее, не делаясь никогда вполне прямой, подобно тому как в аналитической геометрии прямая линия рассматривается как кривая первого порядка с бесконечно малой кривизной. Сколь бы большим ни сделалось — х логарифмической кривой, у никогда не станет = 0.

* * *

Прямое и кривое. В дифференциальном исчислении они в конечном счете приравниваются друг к другу. В дифференциальном треугольнике, гипотенузу которого образует дифференциал дуги (если пользоваться методом касательных), эту гипотенузу можно рассматривать

«как маленькую прямую линию, являющуюся одновременно элементом дуги и элементом касательной», — все равно, будем ли мы рассматривать кривую как состоящую из бесконечно многих прямых линий или же «как строгую кривую; ибо, поскольку искривление в каждой точке М бесконечно мало, — последнее отношение элемента кривой к элементу касательной есть, очевидно, отношение равенства» .

Отношение здесь непрерывно приближается к отношению равенства, но приближается, сообразно природе кривой, асимптотическим образом, так как соприкасание ограничивается точкой, не имеющей длины. Тем не менее в конце концов принимается, что равенство кривой и прямой достигнуто (Боссю, «Дифференциальное и интегральное исчисление»,

Париж, год VI, т. I, стр. 149)[458]. В случае полярных кривых[459] дифференциальная воображаемая абсцисса принимается даже за параллельную действительной абсциссе, и на основе этого допущения производят дальнейшие действия, хотя обе пересекаются в полюсе; отсюда даже умозаключают о подобии двух треугольников, из которых один имеет один из своих углов как раз в точке пересечения тех двух линий, на параллелизме которых основывается все подобие! (фиг. 17)[460].

Когда математика прямого и кривого оказывается, можно сказать, исчерпанной, — новое, почти безграничное поприще открывается такой математикой, которая рассматривает кривое как прямое (дифференциальный треугольник) и прямое как кривое (кривая первого порядка с бесконечно малой кривизной). О метафизика!

* * *

Тригонометрия. После того как синтетическая геометрия до конца исчерпала свойства треугольника, поскольку последний рассматривается сам по себе,

Скачать:TXTPDF

Собрание сочинений Маркса и Энгельса. Том 20 Карл читать, Собрание сочинений Маркса и Энгельса. Том 20 Карл читать бесплатно, Собрание сочинений Маркса и Энгельса. Том 20 Карл читать онлайн