Сайт продается, подробности: whatsapp telegram
Скачать:TXTPDF
Анализ бесконечно малых.Физика учит новый язык

имеющихся в распоряжении ресурсах, как человеческих, так и природных. Кроме того, он изложил герцогу идею, которая только начинала зарождаться в его голове: создать в Германии академию наук. Лейбниц даже представил ряд изобретений, предназначенных для повышения эффективности горнодобывающей промышленности, таким образом намереваясь получить средства на создание этого учреждения.

Несмотря на то что Лейбниц обосновался в Ганновере, он не потерял связи с образованными людьми и учеными Лондона и Парижа. Он продолжал получать информацию о достижениях науки и вел переписку с влиятельными людьми своего времени. Например, в то время ученый переписывался с Анри Жюстелем (1620-1693), который был секретарем короля Франции, хотя позже и переехал в Англию. Для Жюстеля Лейбниц осуществил небольшое исследование истории графского рода Ловенштайн. Это была первая написанная им историческая работа.

ПОД НОВЫМ РУКОВОДСТВОМ

Герцога Иоганна Фридриха сменил его брат Эрнст Август (1629-1698), герцог Брауншвейг-Люнебургский, который позже стал первым курфюрстом Ганновера, то есть одним из тех,кто имел право участвовать в выборах императора Германии.

После прибытия в Ганновер Лейбниц познакомился также с Софией (1630-1714), супругой Эрнста Августа. Она была дочерью Фридриха V, короля Богемии, и Елизаветы Стюарт, принцессы Баварии, Шотландии и Англии, а также внучкой Якова I, короля Англии (он же Яков VI, король Шотландии). Следовательно, София являлась претенденткой по прямой линиина трон Великобритании как самая прямая протестантская наследница королевы Англии, и только ее смерть за два месяца до кончины королевы Анны Стюарт помешала ей взойти на трон. Ее сын Георг Людвиг позже стал королем Англии под именем Георга I и основателем Ганноверской династии.

Отношения между Лейбницем и Софией становились с годами все более близкими и в итоге вылились в крепкую дружбу. Принцесса очень интересовалась интеллектуальной деятельностью во многих сферах, которые она часто обсуждала с Лейбницем, что подтверждает существующая обширная переписка.

Должности Лейбница были сохранены. Он написал доклад для нового герцога, где сообщал о деталях своей карьеры и о ряде проектов, которые задумал. Лейбниц предложил дополнить герцогскую библиотеку лабораторией и музеем, а также создать герцогскую типографию. В документе, направленном первому министру Францу Эрнесту фон Платену (1631- 1709), он предложил свои услуги для составления истории династии Брауншвейг-Люнебург. Лейбниц явно не представлял себе, в какие дебри забирается, поскольку это исследование будет преследовать его всю оставшуюся жизнь.

НОВЫЕ ПРОЕКТЫ

Несмотря на многочисленные задания, которые он получал от герцога, у Лейбница были силы и способность заниматься исследованиями во многих областях науки. В 1681 году Отто Менке посетил Ганновер и встретился с Лейбницем, чтобы поговорить об издании журнала «Акты ученых». Менке также попросил коллегу прислать одну из своих работ для публикации в журнале. Кроме собственных исследований, Лейбниц также писал рецензии на другие сочинения, как, например, на труд Джона Уоллиса по алгебре или на работу математика Жака Озанама, в которой он представлял свои тригонометрические таблицы.

Он продолжал писать сочинения для герцога в абсолютно разных сферах. Например, Лейбниц исследовал методы улучшения организации армии и повышения ее боевого духа и продумывал способы сохранения физического и психического здоровья солдат. Для этого ученый предлагал снабдить их продовольствием, одеждой и подходящими лекарствами, а также использовать их в мирное время на общественных работах, таких как строительство сооружений, дренаж болот и проведение канализации, что сделало бы более сносной рутину военных тренировок. Кроме того, Лейбниц представил проект профилактических средств для борьбы с эпидемией, которая в то время терзала Европу, поскольку врачам не удалось найти никаких средств против нее. Он предложил помешать перемещению зараженных людей и изолировать их.

По поручению герцогского советника Отто Гроте Лейбниц подготовил меморандум об увеличении числа курфюршеств в Германии. В то время существовало восемь курфюршеств — пять католических и три протестантских. В своей работе ученый отстаивал необходимость создания девятого, протестантского. Через несколько лет, в 1692 году, герцог Эрнст Август был объявлен курфюрстом. Лейбниц участвовал в проекте от начала и до конца и после предоставления герцогу избирательного права создал памятную медаль, а также подготовил речь, содержащую исторический обзор, которую зачитал Отто Гроте на процедуре получения титула от императора.

По сути Лейбниц принимал участие в любом политическом деле в Ганновере. Во время одной из поездок в Италию ученый по просьбе принцессы Софии добился политическогоальянса посредством брака между Шарлоттой Фелицитас, старшей дочерью герцога Иоганна Фридриха, с герцогом Ринальдо из Модены, а также помолвки младшей дочери герцога, Вильгельмины, с королем Венгрии и будущим императором Иосифом I Габсбургским.

Кроме научных исследований самой важной задачей Лейбниц в эти годы была, как мы уже сказали ранее, разработка истории династии Брауншвейг-Люнебург для герцога. Лейбниц считал, что история и генеалогия стали науками и поэтому для них необходима достоверная документация, основанная на первичных источниках и работах авторов эпохи. Таким образом, ученый добился у герцога пожизненной пенсии и освобождения от обычных обязанностей, чтобы посвятить себя исключительно этому делу.

Кроме того, в то время Лейбниц уже совершил открытие, с которым вошел в историю как один из самых выдающихся математиков: анализ бесконечно малых.

МАТЕМАТИКА В ДРЕВНЕЙ ГРЕЦИИ

Ученые Древней Греции создали математику как науку. Предыдущие цивилизации использовали ее для решения практических проблем повседневной жизни. Например, египтяне пользовались теоремой Пифагора для построения прямого угла и с ее помощью могли восстанавливать границы полей, затопленных Нилом. Для греков занятие математикой было самоцелью, их не волновало ее практическое применение. Это не означает, что они также не использовали свои знания для нахождения решений в конкретных ситуациях, но они четко разграничивали, как мы могли бы сказать, теорию и практику. Например, древнегреческие ученые различали арифметику, то есть абстрактную теорию чисел,и логистику, что по- гречески означало «счетное искусство», то есть прикладную арифметику. Они считали важным изучение математики как таковой и посвящали этому свои работы, но в известной степени презирали прикладную математику, с помощью которой решались каждодневные задачи.

В более позднюю эпоху, во время расцвета Александрии, греческие ученые, продолжая культивировать чистую науку, начали развивать и ее прикладную часть. Александрийцы изобрели насосы, чтобы поднимать воду из колодцев, шкивы и системы зубчатых передач, чтобы передвигать большие грузы; они использовали силу воды и пара для движения машин, огонь, чтобы заставить статуи двигаться, или сжатый воздух, чтобы бросать предметы на большие расстояния.

В то время как в предыдущих цивилизациях знания приобретались с помощью опыта, индукции или экспериментов, древнегреческие ученые развивали дедукцию. На основе ряда понятий выводились новые умозаключения при применении строгих дедуктивных правил рассуждения. Например, Аполлоний (ок. 262-190 до н. э.) в своей книге «Конические сечения» представил 487 пропозиций, выведенных из аксиом, собранных в «Началах» Евклида. Главной целью ученых Древней Греции было желание понять физический мир, они считали математические законы основой природы и полагали, что эти законы необходимы для изучения Вселенной. Это был критический и рациональный способ познания природы.

Древнегреческие математики должны были доказывать свои рассуждения исчерпывающе, не оставляя возможности для каких-либо лазеек. К такому подходу математика вновь обратилась только в XIX веке, и именно благодаря ему древнегреческие работы были настолько совершенны, что невозможно было понять, как получались столь удивительные результаты. Считалось, что определенную роль сыграла изобретательность древнегреческих ученых, некая счастливая мысль, которая помогала им прежде прийти к заключению, а уже потом исчерпывающим образом его доказать. Многие математики начиная с эпохи Возрождения были убеждены в том, что ученые Древней Греции владели каким-то секретным методом. Это видно из следующего комментария Декарта:

«Так же как многие ремесленники скрывают секрет своих изобретений, Папп и Диофант, возможно опасаясь, что из-за простоты и легкости своего метода он потеряет ценность, предпочли, чтобы вызвать всеобщее восхищение, представить нам плод своей деятельности как чистую истину, очень тонко выведенную, вместо того чтобы показать метод, которым пользовались».

ПАЛИМПСЕСТ АРХИМЕДА

Палимпсест — это текст, написанный на пергаменте поверх другого текста. Благодаря такой рукописи мы знаем одно из самых важных сочинений Архимеда. Многие работы гения из Сиракуз сохранились для потомков благодаря арабским и латинским копиям. Однако математикам XVI века хотелось понять, каким методом он пользовался, чтобы прийти к своим открытиям. Книги ученого содержали схематические и полные доказательства, но было неизвестно, как он пришел к этим результатам до того, как их доказать. Думали, что у него не было никакого метода открытия своих блестящих идей, а если и был, то он не оставил его для потомков. [Картинка: img_30.jpg]

«Метод»

В 1906 году датский филолог Йохан Людвиг Гейберг получил новость о палимпсесте математического содержания, хранящемся в монастыре в Константинополе. При помощи фототехники ему удалось скопировать оригинальный спрятанный текст, и то, что он обнаружил, оказалось сочинениями Архимеда. Оригинальный текст — это копия некоторых работ древнегреческого ученого, сделанная в X веке. Поверх него впоследствии были нанесены религиозные тексты. Большинство из найденных работ Архимеда были известны, но среди них также обнаружена единственная известная копия сочинения «О механическом методе доказательства теорем», более известного как «Метод». Данная работаписьмо Архимеда Эратосфену, в нем ученый объясняет метод получения результатов, которые потом он доказывал с максимальной строгостью. При этом Архимед пользуетсясмесью рассуждений о бесконечно малых и механики для нахождения площадей и объемов. Многие из идей, изложенных в этой работе, появились в математике только через две тысячи лет, в XVII веке. В целом считают, что если бы «Метод» стал известен вместе с прочими сочинениями Архимеда, анализ бесконечно малых был бы создан намного раньше.

Наибольшего расцвета в области вычислений математика добилась в александрийскую эпоху, когда такие математики, как Архимед, Эратосфен и Гиппарх, получили много результатов вычисления длин кривых, площадей и объемов разных фигур. Тем не менее в течение еще многих веков говорили о квадратуре, если речь шла о площади, и о кубатуре для объема. Согласно Паппу, александрийскому математику III—IV веков, кривые можно классифицировать следующим образом.

— Плоские, которые строятся из прямых и окружностей.

— Конические, которые состоят из точек конуса.

— Линейные, то есть все остальные кривые, которые невозможно создать предыдущими методами, такие как спирали, конхоиды, циссоиды и так далее. Эти кривые обычно не рассматривали.

Многие греческие математики были предшественниками современного математического анализа. Например, Папп упоминал математика Зенодора, который в своей книге об изопериметрических фигурах выводил следующие теоремы.

Среди

Скачать:TXTPDF

Анализ бесконечно малых.Физика учит новый язык Лейбниц читать, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать бесплатно, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать онлайн