Сайт продается, подробности: whatsapp telegram
Скачать:TXTPDF
Анализ бесконечно малых.Физика учит новый язык

то их флюксии ученый обозначил как х’ и у’. Флюксия флюксии, то есть вторая производная, обозначена x» и y» и так далее. Ньютон также определил момент флюэнты, который обозначил о, как очень маленькое изменение переменной, бесконечно малый интервал изменений.

В третьей работе, «О квадратуре кривых», написанной в 1676 году и опубликованной в 1704-м в качестве приложения к своему труду по оптике, Ньютон частично изменил подход к бесконечно малым, больше приблизившись к интуитивной идее предела.

Посмотрим, как ученый использовал эти элементы для нахождения производной. Возьмем функции у = xn.Ньютон говорит, что если переменная х флюирует, то есть бесконечно мало изменяется до х + o, то функция превращается в (х + o)n.Далее из этого двучлена он получает ряд:

(x+o)n = xn + n· xn-1· o +n(n-1)/2· xn-2· o2 + …

Если вычесть из данного выражения значение у = хnполучится, что приращение к переменной х, то есть о, равносильно приращению к переменной y, то есть:

n· xn-1· o + n(n-1)/2 · xn-2· o2 + …

Если мы проведем преобразование, то получим выражение:

n· xn-1 + n(n-1)/2· xn-2· o + …

Теперь, как говорил сам Ньютон, «пусть эти приращения испарятся»: все члены с приращением исчезают, если это значение стремится к нулю. Таким образом, найденная производная равная n · хn-1.

АНАЛИЗ ЛЕЙБНИЦА

После 1675 года в заметках Лейбница уже появляются идеи, которые привели его, по ходу дела серьезно меняясь, к собственному пониманию анализа. Однако похоже, что идеи, которые направили ученого по этому пути, зародились еще раньше. В своем труде «Об искусстве комбинаторики» Лейбниц работал с последовательностями и разностями между их членами. Он исходил, например, из последовательности квадратов 0, 1, 4,9,16, 25,…

Первые разности были 1, 3, 5, 7, 9, … вторые — 2, 2, 2, 2, 2, … а третьи все были нулевые. Если взять третью степень, то все четвертые разности были нулевыми, и так далее.

Он убедился, что при сложении первых членов последовательности первых разностей получается следующий член исходной последовательности, то есть при сложении двухпервых членов (1 +3 = 4) получается третий член последовательности. Если сложить три первых члена 1 + 3 + 5 = 9, то получается четвертый член, и так далее.

Таким образом, анализ бесконечно малых Лейбница основывается на суммах и разностях членов последовательностей. Сумма дает нам интегральное исчисление, то есть площадь, ограниченную кривой, а разности — производную.

Лейбниц считал, что кривые сформированы из бесконечного числа прямолинейных бесконечно малых отрезков, которые составляют касательные к кривой. То есть для каждой точки у нас есть значение х, значение у и значение отрезка, соответствующего кривой; значит, у нас есть последовательности чисел, к которым можно применить сложение и вычитание.

В первой главе статьи об анализе, опубликованной Лейбницем в 1684 году в журнале «Акты ученых» под названием «Новый метод максимумов и минимумов, а также касательных, для которого не служат препятствием ни дробные, ни иррациональные величины, и особый для этого род исчисления», ученый представил свой метод и применил его для решения задачи, поднятой картезианцем Флоримоном де Боном: нахождения кривых с постоянной подкасательной. Рассмотрим его в современной записи.

Подкасательная — это проекция на ось X отрезка от места пересечения касательной с осью X до точки касания; на рисунке на следующей странице это отрезок АВ. Мы хотим,чтобы он был постоянным и был равен с. В этом доказательстве Лейбниц использовал то, что известно как характеристический треугольник, которым также пользовались Паскаль и Барроу, с катетами dx и dy, а в качестве гипотенузы — один из бесконечно малых отрезков, которые составляли кривую.

Отрезок BQ равен у. Поскольку треугольник ABQ подобен характеристическому треугольнику:

dy/dx = y/c,

то

dy/y = dx/c.

После интегрирования этого выражения получается

ln(y) = x/c.

Следовательно, кривые с постоянной подкасательной — это кривые, заданные функцией у = ex/c,то есть экспоненциальные. Лейбниц так находил производную произведения:

«d(xy)— то же самое, что разность между двумя смежными ху, одно из которых равно ху, а другое — (х + dx) (у + dy). Тогда d(xy) = (x + dx)(y + dy)-xy = xdy + ydx + dxdy, и это равно xdy + ydx, если величину dxdy опустить, поскольку она бесконечно мала относительно остальных величин, так как dx и dy, предполагается, бесконечно малы».

[Картинка: img_47.jpg]

Характеристический треугольник Лейбница, в котором появляются касательная к кривой и ее подкасательная.

ПОЛЕМИКА ОБ АНАЛИЗЕ

Сегодня признается, что Ньютон был первым, кто разработал принципы анализа, а Лейбниц первым опубликовал результаты. Они оба пришли к нему независимо, базируясь наодном и том же фундаменте.

Уже в 1674 году Лейбниц мимоходом упоминал в письме Ольденбургу, что он нашел квадратуру круга с помощью открытого им общего метода. А в 1675 году ученый сообщал ему, что нашел метод для решения квадратур, который можно обобщить, но не сказал ничего более подробного. В том же самом году в Париж через Лондон приехал благородный саксонец Вальтер фон Чирнхаус с письмами от Ольденбурга для Лейбница и Гюйгенса. Фон Чирнхаус работал какое-то время с Лейбницем, например над рукописями Паскаля, которые потом пропали, и знаем мы о них теперь только благодаря Лейбницу. Было ясно, что Чирнхаус не испытывал никакого интереса к анализу бесконечно малых, поэтому он ни очем не мог проинформировать Лейбница. Чирнхаус утверждал: все, сделанное Барроу и другими английскими математиками,— лишь ответвления от того, что привнес Декарт.Чтобы оспорить это мнение, Коллинз, библиотекарь Королевского общества, написал работу примерно на 50 страниц, известную как Historiola, в которой объяснял анализ, разработанный Барроу и Ньютоном. В 1675 году он послал отрывок Чирнхаусу и Лейбницу, хотя у последнего уже был разработан собственный анализ.

В октябре 1676 года по пути из Парижа в Ганновер Лейбниц провел неделю в Лондоне. Тогда Коллинз позволил ему списать фрагменты Historiola и «Анализа» самого Ньютона.

Ньютон и Лейбниц несколько раз обменивались письмами через Ольденбурга. Пятого августа 1676 года Ольденбург отправил Лейбницу письмо Ньютона, известное как Epistola prior, через Самуэля Кёнинга, который был с визитом в Париже; послание затерялось в бумагах и дошло до адресата только 26 числа этого месяца. В этом письме Ньютон делал особенный акцент на биноме и представлял еще несколько результатов, уже известных Лейбницу, не объясняя методов, с помощью которых он их получил. Лейбниц ответил ему на следующий день, уверяя, что его методдругой. Во время полемики о первенстве открытия анализа многие делали акцент на том, что у Лейбница было почти три недели для внимательного изучения письма до того, как он ответил.

В 1677 году ученый получил второе письмо Ньютона, Epistola posterior, в котором тот объяснял ему все о своей работе с бесконечными рядами и также говорил о своем анализе, хотя представил его в виде криптограммы, основанной на латинских словах:

«Основа этих операций довольно очевидна, но поскольку я сейчас не могу продолжить объяснение, я предпочел оставить его скрытым: 6accd et 13eff.71319n4o4orr4s8tll2vx».

Эта бессмыслица после перевода с латыни означала: «Если задано любое уравнение, включающее некоторое число величин-флюэнт, найти флюксии, и наоборот». Она дополнялась еще более распространенной анаграммой, которая даже после дешифровки давала мало информации тому, кто не был знаком с данной темой.

Вторые изобретатели не берутся в расчет.

Исаак Ньютон о Лейбнице после полемики о первенстве

ОТКРЫТИЯ АНАЛИЗА БЕСКОНЕЧНО МАЛЫХ

После публикации своей первой статьи, посвященной анализу, в 1684 году у Лейбница возникли проблемы с авторством. И хотя он настаивал на том, что его метод отличаетсяи что он нашел его до того, как познакомился с какой-либо работой Ньютона, о чем свидетельствовали письма, написанные Ольденбургу, это не помогло. Дело обострилось, когда Никола Фатио де Дюилье, ученик Ньютона, обвинил Лейбница в плагиате.

Обвинения начали летать туда-сюда между континентом и островом, а математики вставали на сторону того или другого ученого. Полемика разгорелась так жарко, что Лейбниц потребовал создать комиссию Королевского общества, чтобы определить, кто был прав в этой дискуссии. Комиссия, которая была создана Ньютоном, бывшим в то время председателем научного общества, пришла к выводу, что первенство было за английским ученым.

Из-за этого спора английские и европейские интеллектуалы прервали отношения и перестали обмениваться информацией. Ученые с континента поддержали Лейбница, а английские — Ньютона, но так как английская версия анализа в большей степени основывалась на геометрических методах, чем европейская, это стало помехой для английской математики, которая в условиях изоляции отстала от континентальной.

РАСПРОСТРАНЕНИЕ АНАЛИЗА

Метод Лейбница был быстро принят математиками европейского континента. Самыми преданными его «апостолами» были братья Якоб и Иоганн Бернулли, первые из большой семьи известных математиков. Работа Лейбница была оригинальной и результативной, но несколько незаконченной: иногда ей было сложно следовать. К счастью, братья Бернулли упорядочили ее, привнеся множество примеров и новых деталей. Лейбниц признал большой вклад, сделанный Бернулли, и даже подчеркнул, что они стали первыми, кто применил новый метод к решению физических проблем.

Якоб Бернулли (1654-1705) являлся самоучкой и был хорошо знаком с трудами главных предтеч анализа: Декарта, Уоллиса и Барроу. Он работал преподавателем математики в Базельском университете. Найдя одну из первых работ Лейбница по данной теме, Якоб самостоятельно освоил дифференциальное и интегральное исчисление. Он объяснил суть нового метода своему брату Иоганну, и они оба начали работать над анализом Лейбница. В 1690 году в «Актах ученых» Якоб опубликовал статью, в которой говорил о собственных методах анализа и решил задачу, предложенную Лейбницем за три года до этого: «Найти кривую, расположенную в вертикальной плоскости, по которой материальная точкаопускается на одну и ту же длину за одно и то же время».

У Иоганна Бернулли (1667-1748) по прозвищу Задира было больше таланта и изобретательности, чем у брата. Он был великим геометром, хотя и не очень скромным (на его могильной плите выгравирована надпись: «Здесь лежит Архимед своего времени»). Он был убежденным защитником Лейбница и сторонником его приоритета в создании математического анализа. Иоганн поссорился с

Скачать:TXTPDF

Анализ бесконечно малых.Физика учит новый язык Лейбниц читать, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать бесплатно, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать онлайн