Сайт продается, подробности: whatsapp telegram
Скачать:TXTPDF
Анализ бесконечно малых.Физика учит новый язык

логарифмов удвоило жизнь астрономам».

Логарифм числа b по основанию а определяется как показатель степени, в которую нужно возвести число а, чтобы получить число Ь. В символьном выражении это означает:

logab =х <-> ах = b.

Например, логарифм 81 по основанию 3 равен 4 (log381 = 4),поскольку З4 = 81.

Нахождением логарифма называется операция, обратная возведению в степень, точно так же, как вычитанием является действие, обратное сложению. Если у нас есть значение суммы и мы знаем одно из слагаемых, поиск другого слагаемого означает вычитание из суммы значения известного слагаемого; следовательно, это обратные операции. Точно так же, если мы знаем значение степени и ее показатель, найти основание равносильно извлечению корня, то есть нахождению корня той же степени из значения данной степени. А если мы знаем основание, нахождение показателя степени превращается в нахождение логарифма по этому основанию значения этой степени. Поскольку сумма двух чисел обладает свойством коммутативности, то есть порядок слагаемых не меняет сумму, у этой операции есть только одна противоположная. Поскольку возведение в степень некоммутативно, существуют две обратные операции, в зависимости от того, известно ли основание или показатель степени.

Наряду с логарифмами по основанию 10, которые обычно просто сокращаются как log или lg, без указания основания, также широко используются логарифмы по основанию е, трансцендентного числа из той же серии, что и знаменитое число я. Эти логарифмы получили название натуральных логарифмов и обычно обозначаются In или loge.

Укажем основные свойства, на которых основывается вычисление с помощью логарифмов и которые верны для любого основания.

Логарифм произведения двух чисел равен сумме логарифмов этих двух множителей: log (а • b) = loga + logb.

Логарифм частного двух чисел равен разности между логарифмом числителя и логарифмом знаменателя:

log(a/b) = lig a — log b.

Логарифм степени равен произведению показателя степени на логарифм основания: logab = b• loga.

Из вышеперечисленных свойств видно, что операции заменяются другими, более простыми. Изначально для применения данного метода было необходимо напрямую работать с таблицами логарифмов.

Метод логарифмического исчисления сразу же взяли на вооружение современики, которые смогли оценить те удобства, которые он обеспечивал. И очень быстро были созданы первые механические инструменты, упрощавшие использование логарифмов.

Считается, что английский астроном и математик Уильям Отред (1575-1660) был первым, кто применил греческую букву я для обозначения соотношения между длиной окружности и ее диаметром. Также ему приписывается использование символа х для обозначения умножения и сокращенных обозначений sin и cos для тригонометрических функций синус и косинус. Но в историю он вошел благодаря изобретению в 1621 году логарифмической линейки. Отред создал пару таблиц, содержащих значения логарифмов. С их помощью можнобыло совершать математические операции, перемещая одну таблицу вдоль другой. Любопытно, что когда логарифмическая линейка впервые поступила в продажу, она имела круглую форму и представляла собой ряд концентрических дисков, на которых располагались значения логарифмов и которые вращались вокруг центра. Этот инструмент обычно называют круглой логарифмической линейкой.

Однако основная конструкция счетных линеек представляла собой статичный брусок с движущейся линейкой в середине. В современных счетных линейках как на статичныйбрусок, так и на движущуюся линейку нанесены шкалы. С их помощью можно вычислять не только логарифмы, но и тригонометрические и гиперболические функции, не говоря уже о возведении в степень, вычислении корней, умножении и делении чисел.

Счетные линейки стали инструментом, ежедневно используемым архитекторами, инженерами и другими специалистами, пока в последней трети XX века не получили популярность инженерные калькуляторы, в которые уже были включены вычисления логарифмов.

МЕХАНИЧЕСКИЕ УСТРОЙСТВА

Первую в истории счетную машину создал немецкий ученый Вильгельм Шикард (1592-1635). Он был преподавателем арамейского и древнееврейского языков, лютеранским священнослужителем, теологом, топографом, астрономом и математиком. С 1613 по 1619 год Шикард служил дьяконом в Нюртингене, где познакомился с Кеплером. Последний попросил Шикарда, имевшего известность прекрасного гравера, подготовить серию гравюр и ксилографий для его работы «Гармония мира». Также он попросил его помощи в вычислении ряда таблиц. [Картинка: img_22.jpg]

Гравюра, сделанная Грегором Рейшем для своей книги «Жемчужина философииш (1508). На ней показано соревнование между абакистом (Пифагором) и алгористом (Боэцием). [Картинка: img_23.jpg]

Круглая логарифмическая линейкаприбор, созданный Уильямом Отредом в 1621 году. [Картинка: img_24.jpg]

Прототип арифметической машины, изобретенной Лейбницем.

Именно тогда у Шикарда и возникла идея создать машину, которая могла бы механизировать астрономические вычисления, которые он делал. В 1623 году он объяснял, как ему пришла в голову такая идея, в письме Кеплеру:

„То, что делали с помощью вычислений, я попытался сделать с помощью механики. Я создал машину, состоящую из 11 полных зубчатых колес и шести неполных; она вычисляет мгновенно и автоматически на основе заданных чисел, складывая, вычитая, умножая и деля их“.

Так Шикард разработал машину, основанную, как и счетная линейка, на логарифмах. Она состояла из ряда цилиндров, которые вращались, что было похоже на работу старогокассового аппарата. Машина, которую ученый назвал вычислительными часами, не была построена полностью, поскольку он начал делать один экземпляр для Кеплера, но пожар разрушил прототип. В XX веке на основе схем Шикарда было построено несколько экземпляров этой машины.

ПАСКАЛИНА

Следующая известная машина была создана французским математиком Блезом Паскалем, разработавшим ее в 1642 году для помощи своему отцу, интенданту Нормандии, которому часто приходилось заниматься утомительными расчетами. Она могла складывать и вычитать.

Данная машина состояла из ряда колес, соединенных между собой и разделенных на десять частей, от 0 до 9. Каждый раз, когда одно колесо делало полный оборот, передвигалось вперед следующее колесо. Для вычитания было достаточно повернуть колесо в противоположном направлении, и когда заканчивался полный оборот, вычиталась единица из следующего круга. Конструкция состояла из коробки в форме параллелепипеда с рядом колес, связанных между собой. Каждое из них соответствовало определенному разряду. Даже сегодня можно найти в некоторых магазинах или в интернете арифмометры, основанные на той же идее.

БЛЕЗ ПАСКАЛЬ

Блез Паскаль (1623-1662), физик, математик и философ, с очень юных лет начал посещать научные сообщества своего времени и вошел в состав кружка Мерсенна. Уже в 17 лет Паскаль написал работу „Опыт о конических сечениях“, в которой сформулировал теорему, известную как „теорема Паскаля“,— она является одной из основных теорем проективной геометрии. Ученый работал с вакуумом и атмосферным давлением, воспроизводя эксперимент Эванджелисты Торричелли. Паскаль открыл основной закон гидростатики.Также он сформулировал закон сообщающихся сосудов. Кроме того, он вычислил площадь фигуры, ограниченной циклоидой. Кавалер де Мере, дворянин, увлеченный азартнымииграми, задал ученому задачу об игральных кубиках: что более вероятно — выбросить по крайней мере одну шестерку за четыре броска кубика или двойную шестерку за 24 броска двух кубиков? В переписке между Паскалем и французским математиком Пьером де Ферма, посвященной решению этой задачи, были заложены основы теории вероятностей. Также ученый разработал то, что сегодня известно как треугольник Паскаля, состоящий из рядов чисел. Каждое число треугольника равно сумме двух расположенных над ним чисел. Данный треугольник используется в теории вероятности. Но, без сомнения, самое известное изобретение Паскаля — его вычислительная машина, паскалина, с помощью которой можно было совершать сложение и вычитание. [Картинка: img_25.jpg]

Паскалина — вычислительная машина, придуманная Паскалем.

Сам Паскаль создал фабрику для изготовления паскалины, как было названо это изобретение. Поскольку процесс был полностью ручным, цена конечного продукта оказалась такой высокой, что производство не удалось поставить на поток. В итоге было изготовлено около полусотни машин, из которых сегодня осталось несколько, хранящихся внаучных музеях.

В середине 1660-х годов появляются новые машины, на этот раз созданные математиком Сэмюэлем Морлендом (1625-1695), который, кроме того, был дипломатом, шпионом, академикоми в особенности изобретателем: он разработал портативные плиты на пару и водяные насосы. Морленд был знаком с машиной Паскаля и, похоже, также с машиной, сконструированной Рене Грийе де Ровеном, часовщиком Людовика XIV, на которой, как считается, основывалась машина Лейбница. Он создал три вычислительные машины: одну — для осуществления тригонометрических вычислений, другую — складывающую и третью — позволяющую умножать и делить. Последние две машины представлены в книге Морленда „Описание и применение двух арифметических инструментов“.

Суммирующая машина имела ряд колес, подобно машине Паскаля, но они были независимы друг от друга. К каждому из них был присоединен маленький круг, указывающий число полных оборотов, которые сделало большое колесо, и количество этих оборотов потом нужно было прибавить вручную. Данная машина была придумана для работы с английской монетной системой и считается первым карманным калькулятором.

Умножающая машина была основана на тех же принципах, что и таблицы Непера. Она состояла из плоской пластинки с несколькими отверстиями, куда можно было поместить ряд взаимозаменяемых дисков, которые были в основном круглой версией таблиц Непера. Некоторые из таких дисков позволяли вычислять квадратные и кубические корни. Есть предположение, что конструкция умножающей машины была придумана под влиянием другой машины, созданной в 1659 году итальянцем Тито Ливио Бураттини (1617-1681). [Картинка: img_26.jpg]

Механизмы арифметической машины Лейбница. Это была первая машина такого типа,которая позволяла осуществлять четыре базовые арифметические операции.

АРИФМЕТИЧЕСКАЯ МАШИНА ЛЕЙБНИЦА

Все машины того времени создавались по подобию машины Паскаля. Однако арифметическая машина, разработанная Лейбницем, была гораздо более прогрессивной моделью по сравнению с другими современными ему механизмами. Хотя изначально ученый основывался на том же подходе, что и Паскаль, вскоре он понял: для перехода от сложения и вычитания к более сложным операциям нужен более мощный и сложный механизм.

Возможно, конструкция этой машины уже была продумана Лейбницем в начале 1670-х годов. Во время своего первого визита в Париж он познакомился с наследием Паскаля и наверняка изучал его вычислительную машину. Хотя изначально Лейбниц назвал свою машину Staffehvalze (по-английски Stepped Reckoner), что-то вроде „ступенчатого калькулятора“, далее он говорил о ней как об арифметической машине.

Она состояла из двух частей: верхней, статичной, и нижней, наделенной самоходной кареткой. Но ее гениальность — в наличии ряда цилиндров, на которых находилось по девять зубцов различной длины (см. рисунок). Цилиндр был закреплен на оси и соприкасался с зубчатым колесом, прикрепленным к оси, параллельной предыдущей. Когда крутился соответствующий диск с цифрами, цилиндр продвигался вперед или назад,

Скачать:TXTPDF

Анализ бесконечно малых.Физика учит новый язык Лейбниц читать, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать бесплатно, Анализ бесконечно малых.Физика учит новый язык Лейбниц читать онлайн