Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Диалектические основы математики

видовые признаки понятия, так понимаем теперь непрерывно и переход от них к родовой общности вместо формально–логического механического суммирования неподвижных и взаимно изолированных видовых и родовых признаков в определяемом понятии.

8. В заключение нашего исследования логической природы дифференциала приведем геометрическое истолкование дифференциала, которое с большей наглядностью и выпуклостью оправдывает выставленную нами логическую теорию.

Вспомним наш чертеж на стр. 651. Пусть точка ? имеет своими координатами ? и у. Тогда абсциссой для М’ будет ?+?? и, следовательно, отрезок MQ = ?x. Отрезок же QM’ =?(x + ?x)—?(x) = ?y. Проведя касательную к кривой в точке ? до встречи ее с ординатой точки М’ в точке Т, мы имеем в прямоугольном треугольнике MQT:

TQ = MQ tgв то же самое время в некотором смысле конечным. Уже здесь становится заметным, что понимание этого неделимого синтеза и тождества то как конечного, то как бесконечного никак не может быть голой теорией (ибо теория тут одинаково говорит и за бесконечное, и за конечное), а является только практикой, решается практикой. Однако сейчас мы этого касаться не будем и только констатируем, что тождество конечного и бесконечного неизбежно и что, в частности, оно же лежит в основе и дифференциала, и интеграла, и производной. В анализе без него обойтись нельзя уже потому, что все эти три последние категории существенно связаны с пределом. Интеграл прямо есть предел и в качестве такового определяется даже в элементарных руководствах. Дифференциал же, правда, так не определяется, но это—только недоразумение. Ведь сами же руководства, определяя дифференциал, говорят нам: пусть мы имеем готовую, как бы то ни было полученную производную, и потом оказывается, что эта производная есть не что иное, как отношение дифференциалов функции и аргумента. Но тогда что же такое эти дифференциалы? Ведь то, что производная есть известного рода предел, этого–То математики уже во всяком случае не могут отрицать. А это значит, что и отношение данных дифференциалов есть предел, или, другими словами, что и каждый из них тоже в некотором смысле как–то связан с пределом. Ведь не могут же числитель и знаменатель дроби не иметь никакого отношения к тому частному, которое получается от деления числителя на знаменатель. Значит, дифференциал функции по меньшей мере связан с тем пределом, которым является производная этой функции. Пусть мы не будем говорить, как именно он связан, но самая связь эта, очевидно, отрицаться ни в каком случае не может.

Итак, категория дифференциала указывает на некоторого рода предельный переход. Предельный переход есть переход при помощи бесконечного становления. Следовательно, поскольку самый–то предел есть нечто конечное, необходимо с полной точностью утверждать, что он есть синтез конечного и бесконечного и что в этом пункте он совершенно неотличим от интеграла, который тоже есть некоторого рода предел.

Остается сюда же присоединить и саму производную, которая тоже есть некоторого рода предел. Значит, в смысле общего синтеза конечного и бесконечного производная, дифференциал и интеграл совершенно тождественны.

Это интересным образом запутывает все дело; и математики забавно барахтаются в этой логической путанице, несмотря на кристальную математическую ясность их построения. Можно, конечно, исключить момент предельности из дифференциала, пользуясь тем методом, когда говорят, что солнце нужно только ночью, так как днем же и без него видно. Правда, тогда дифференциал ничем не отличишь от бесконечно–малого просто. Но иные готовы и на это, только бы не понимать дифференциал вместе с пределом. Путаница эта забавная.

К этому надо присоединить и еще одно обстоятельство, тоже не благоприятствующее ясности. Могут сказать, что если даже все эти три категории есть пределы, то во всяком случае разные пределы. Однако мы тогда спросим: чем же они разные? То, что они могут быть разными в арифметическом смысле, т. е. в смысле конечных чисел, это, разумеется, не может здесь иметься в виду, так как конечные количественные различия не создают разных категорий даже и в самой арифметической области. Но может быть, эти три категории различны своей бесконечностью? Так говорить тоже едва ли имеет смысл. Ведь бесконечность во всех трех случаях есть только непрерывное становление предела. Как таковое оно совершенно одинаково в трех случаях. Может быть, это бесконечное становление происходит тут разными способами? Несомненно. Но разный способ приближения к пределу тоже не может создать тут особых категорий предела. Этот способ приближения к пределу так же нехарактерен для категории предела, как и бесконечное многообразие арифметических операций не создает новой категории конечного числа, а относится к ней как к одной и единственной.

Выходит дело, что ни конечными средствами, ни бесконечными, ни, следовательно, средствами синтеза конечного и бесконечного никак нельзя провести разницы между производной, дифференциалом и интегралом. Скажут: позвольте, дифференциал функции вовсе не есть ее производная (в общем случае); это произведение производной на произвольное приращение аргумента! Однако я не знаю, что тут нового дает произведение. Пусть будет у нас производная 2х. Пусть произвольное приращение аргумента будет 5. Я не понимаю, что тут «дифференциального» в IOjc. И чем принципиально 2х отличается от 10х? Юл: в пять раз больше 2х. Так что же, значит, везде, где в арифметике и алгебре мы умножаем какое–нибудь выражение на 5, мы тем самым уже получаем «дифференциал»? Точно так же если интегралом для 2х является х, то я опятьтаки никакого принципиального различия между 2х и х не вижу. Это элементарная алгебра; и при чем тут анализ, я не знаю.

Совершенно очевидно, что все эти внешние математические операции имеют какой–то не просто математический, а логический смысл. И в этом–то «смысле» и заключается все дело. Именно его математики имеют в виду, когда говорят о производной, дифференциале и интеграле. Формулы же здесь только результат этих смысловых операций. Надо осмыслить этот результат сознательно, подобно тому как математики осмысливают его бессознательно. Нет ничего проще для математика, как «перейти к пределу». Однако логически это весьма сложная операция. Математик в противоречии со своей сознательной теорией бессознательно думает, что к пределу можно перейти путем каких–нибудь операций. Однако сущность предела как раз в том и заключается, что совершенно нельзя перейти к нему путем тех или других математических операций. Сколько бы мы ни вычисляли квадратный корень из двух или отношение длины окружности к диаметру, мы именно никогда не придем ни к какому пределу. Надо же в конце концов усвоить себе эту основную идею предела. Переход от переменной величины, связанной каким–нибудь пределом, к самому пределу есть переход к новой логической категории, которую никакими вычислениями получить совершенно невозможно. Это логический скачок, а не математическая операция внутри одной и той же логической категории. Так логика властно врывается в математику, путая все математические карты и превращая стройную математическую теорию в полный хаос. И надо во что бы то ни стало выбраться из этого хаоса, из установленной выше путаницы—путем систематического логического учения о числе вообще. Иного пути не видится. Только точнейшим образом отграничившись от всех соседних математических категорий, можно претендовать на ясность этих категорий производной, дифференциала и интеграла.

2. Начнем с основного вопроса: что такое число? Конечно, об этом тоже можно было бы написать целую книгу, но мы ограничимся здесь кратчайшим и наиобщим соображением.

Что число есть всегда некоторого рода раздельность, это бросается в глаза прежде всего. Но для раздельности нужно по крайней мере два элемента и переход от одного к другому. Что такое «два», мы еще не знаем, поскольку мы только еще ставили вопрос о том, что такое число. Мы пока имеем просто некоторое нечто и просто некоторое иное этого нечто[212 — В рукописи: иное. Этого нечто.], к которому это нечто переходит. Употребляя старую диалектическую терминологию, мы тут имеем 1) бытие, 2) становление и 3) ставшее (т. е. это самое «иное», к которому совершен переход от «нечто», т. е. результат становления). Чтобы из этих категорий получить число, надо исключить из них всякое качественное содержание, т. е. надо оставить в них только акты полагания, отбрасывая то, что именно тут полагается. Это элементарный переход от «качества» к «количеству», развивать который мы здесь не будем и который будем предполагать хорошо известным из общей диалектики.

Это первое.

3. Дальше. Полученные три категории не есть нечто метафизически раздельное. Это не три разные вещи или субстанции. Это нечто одно, в котором есть и первое, и второе, и третье. Однако, будучи чем–то одним и неделимым, это общее в каждой такой категории выступает по–разному. Всю эту целокупность мы можем понять и просто как «бытие», как элементарный акт полагания, и просто как становление, и просто как ставшее. Тут возникает основное разделение числа, без которого мы не доберемся до таких специфизированных категорий, как производная, дифференциал и интеграл, а именно в результате этой структурализации мы получаем тут три типа числа наиболее общие, наиболее абстрактные. Уже и на них видно, что мышление не есть только теория и что практика входит в самую внутреннюю сущность мышления. В самом деле, что такое здесь теория? Теория здесь говорит нам о неразрывной значимости трех основных категорий — бытия, становления и ставшего. Правда, строго говоря, и это вовсе не есть теория, а просто результат эмпирического наблюдения действительности. Но допустим, что эти категории откуда–то спустились на нас в готовом виде. Спрашивается: а на основании чего мы вдруг подчеркиваем одну категорию и оттесняем другую? На основании чего мы рассматриваем общую цельность трех категорий то в свете одной из них, то в свете другой, то в свете третьей? Что это за дикий произвол и для чего эта схоластика нам нужна?

Все дело в том, что практика, именно практика заставляет нас производить все эти комбинации. Именно она, и только она, каждый раз решает вопрос, на какой категории из этих трех нам утвердиться и какую из них принять за основную. Перейдя к возникающим отсюда трем типам числа, мы сейчас же убедимся, насколько широк и глубок примат практики в мышлении и как без него невозможно отличить ни конечного, ни бесконечного (ибо теоретически это одно и то же), ни бесконечно–малого от чисел натурального ряда (да, и это тоже одно и то же!), ни дифференциала от интеграла и интеграла от производной.

Тут–то и происходит поверка гибкости и четкости и просто даже конкретности вообще нашего логического метода. Эти три—и подобные им—категории можно встретить где угодно, и прежде всего во всех изложениях диалектики. Но как редко соединяется с ними простое и жизненное представление.

Можно сказать попросту, что эти три категории, взятые сами по себе,

Скачать:PDFTXT

Диалектические основы математики Лосев читать, Диалектические основы математики Лосев читать бесплатно, Диалектические основы математики Лосев читать онлайн