Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Диалектические основы математики

едва ли имеют какой–нибудь познавательный смысл. И почему? Потому, что они ни к чему не относятся; потому, что они беспредметны:; потому, что неизвестно, какому реальному (и уже не категориальному) бытию они соответствуют. Можно сказать даже больше. «Бытие», «становление», «ставшее», взятые как чистые категории, даже еще не есть мышление. Мышление тут еще не началось. Или, вернее, мышление тут началось (раз уж мы заговорили о подобных категориях), но оно в этих категориях еще не выразилось как такое; они, эти категории, есть только бесплотная и бессильная абстракция—даже измышление, не говоря уже о бытии.

4. Что же нужно для того, чтобы здесь началось мышление? Если мышление есть только отражение материи и движется только самой же материей, то, очевидно, необходимо, чтобы эти категории стали тоже чем–то материальным и подвижным. Необходимо, чтобы эти категории материально утверждались. И тут опятьтаки мы должны бороться с той склонностью к абсолютизированию абстракций, которая соблазняет умы даже в вопросе о материальном утверждении. Что это за «материальное утверждение»? Чтобы не впасть в гибельные абстракции, необходимо сейчас же выдвинуть два пункта.

Во–первых, это есть не что иное, как практика, которая единственно только и способна превратить сухие и [не]подвижные категории в живую ткань мышления. Практика не есть использование и фактическое применение уже готового мышления. Но это есть то, благодаря чему впервые только и начинается само мышление. Практику здесь не надо понимать как–нибудь узко. Тут должно быть самое широкое понимание практики, ибо здесь она вообще все то, что переводит неподвижные категории в жизнь. Но вопрос стоит тут строго и бесповоротно: или практика образует самую сердцевину мышления, без которой оно не может и начаться, или нет ровно никакого мышления. Общеизвестно учение Ленина о практике и одобрение им той стороны соответствующего учения Гегеля, которая вводит практику в самое нутро мышления.

Во–вторых, человеческий ум настолько легко поддается гипнозу абстракций, что даже и это введение практики в самую сердцевину и нутро мышления он склонен понимать нежизненно и отвлеченно. Ведь если на самом деле и всерьез нет никакого только «теоретического» мышления, если всерьез самое «наитеоретичнейшее» мышление не может сдвинуться с места без практики (физической, биологической, психической, социальной и т. д. и т. д.), то мы это должны воочию показать на самом же мышлении. Тут невозможно отделываться общими фразами и надо прямо указать пальцем, где же это в мышлении практика, где это она кроется в понятиях, в суждениях, в умозаключениях. Дело не в том, что мы готовое понятие практически применяем (такая точка зрения предполагает, что понятие образовалось без всякой практики и до нее, т. е. это есть в сущности кантианство). Дело должно заключаться в том, чтобы само понятие, само суждение, само умозаключение несло на себе следы этой практики и даже не просто несло эти следы, но чтобы при их помощи впервые только и возникало как понятие, как суждение или как умозаключение. Как это сделать и как это можно было бы здесь не ограничиться фразой, а прямо ткнуть пальцем на понятие, суждение и умозаключение как на глубочайший синтез теории и практики?

Нам думается, что конкретным показателем этого тождества, или единства, теоретического и практического в логическом мышлении является его структура. Структура как раз выражает и отвлеченный смысл, и его материальное утверждение. Понятие как структура, суждение как структура, умозаключение как структура— вот где воочию видна материальность мышления, его практически действенная природа, его бессмысленность вне практики и без материального утверждения. Тут, конечно, не место давать подробный анализ того, что такое структура (это роль специального исследования), но мы ограничимся простым приемом.

А именно, мы ограничимся простым указанием на то, что структура есть один из весьма распространенных в науке принципов и что на нем иной раз строится даже целая наука. Оторванность нашей логики от реальных наук, ее чудовищная отсталость от научных методов и приводят к полному игнорированию того, что такое структура в логическом мышлении. Если бы мы внимательнее относились к современным наукам, то и наша логика не была бы столь абстрактной.

Я беру такую науку, как органическая химия. В значительной своей части она построена именно на принципах структуры. Здесь мы имеем то или иное химическое соединение; и оказывается, что конкретные химические и физические свойства вещества зависят здесь только от формы и порядка соединения отдельных атомов. Одна и та же химическая формула соответствует совершенно разным веществам — в зависимости от того, в каком порядке соединяются указанные в ней химические элементы. Такие химические соединения, которые отличаются между собою не качеством и не количеством входящих в них элементов, но исключительно только структурой их распределения, называются изомерами. Явление изомерии глубоко изучено в современной химии, даже обследовано много разных ее видов. Для нас будет достаточным здесь только один–два примера.

Если мы возьмем, напр., такую формулу, как [СН0], то этой формуле ровно никакого химического соединения не соответствует. Это именно «теория» в худшем смысле слова, ибо настоящей и жизненной теорией она может стать исключительно только в том случае, если будет показано, что она значит практически. Другими словами, с практикой впервые только и возникает самое понятие того химического соединения, которое соответствует приведенной формуле. Поскольку, однако, сама практика не есть мышление, но становится им только в соединении с теорией, она не создает новых смыслов, или новых сущностей, она только превращает их в живую материю, т. е. делает структурными. И вот оказывается, что упомянутой формуле соответствуют целых три химических соединения, т. е. три разных химических вещества, отличающихся между собою, однако, только структурой связывания элементов.

Тут мы имеем т. н. 1) первичный алкоголь, структура связей которого

H[213 — В рукописи в этих и нижеследующих структурных формулах имеются ошибки. Исправлены нами.]

CH0 OH

H

Структура эта, значит, характеризуется тем, что углерод остается на месте, а из восьми частиц водорода три объединяются дважды порознь с кислородом и, кроме того, остающаяся одна частица водорода соединяется с группой кислородводород. Но вот 2) другая схема соединения тех же самых частиц:

CH

H—C OH

OH

И получается уже т. н. вторичный алкоголь. Наконец, 3) структура

CH

O

CH

дает эфир.

Точно так же одни и те же элементы при одном расположении дают малеиновую кислоту, при другом—фумаровую кислоту. Одни и те же элементы дают при одной структуре антрацен, а при другой—фенантрен. Или из одних и тех же элементов имеем при одной структуре винно–каменную кислоту, при другой—виноградную. И т. д. и т. д.

На подобных примерах с замечательной ясностью выступает то, что значит «только теория», все ее бессилие и все отсутствие в ней познавательной ценности. В этой самой формуле СН0, относящейся к целым трем разным химическим веществам, с максимальной очевидностью выступает то, что значит практика для мышления—такая, что если ее нет, то нет и самого понятия, и что значит понятие как структура, где признаки не просто перечислены (это «голая теория»), но связаны между собою в единственно допустимом порядке, повелительно продиктованном практикой и жизнью материального мира.

Если мы поймем, что такое структура в химии, то нетрудно будет применить этот принцип в логике. Раз наши теории получают не только свое жизненное значение, но даже и свою смысловую, «теоретическую» нагрузку исключительно только из практики, то и в них должны созревать эти структуры, которые невозможно вывести из самих понятий и которые могут возникнуть только практически и материально. Другими словами, к полученным выше трем логическим категориям мы должны применить структурный принцип, т. е. рассмотреть их не просто как сумму категорий (хотя бы и логически выведенных), но как целое, получающее каждый раз совершенно особое и внешне самостоятельное значение исключительно в зависимости от формы их объединения, от их структурного взаимоотношения, от выдвигания одних из них и отодвигания других, от того, что с чем из них соединяется сначала и что — в дальнейшем.

8. Переходим к этим трем типам числа, или к трем его структурным понятиям, ибо они, очевидно, выражаясь химически, изомерны.

Арифметическое число, или конечное, есть отдельный и простой акт полагания (т. е. «бытие»), и в свете этих раздельных и изолированно–неподвижных актов (это и есть счет, и прежде всего натуральный ряд чисел) предстает общечисловая совокупность бытия, становления и ставшего. Если мы возьмем 1, 2, 3 и т. д., то единица, напр., обязательно есть «нечто» — значит, она есть «бытие»; далее, она обязательно дробима до бесконечности, ибо иначе это уже не будет обыкновенной реальной единицей, — значит, она есть «становление»; и наконец, она есть обязательно и результат такого становления, т. е. и «ставшее». Всю эту целокупность трех основных категорий мы, однако, в случае числа натурального ряда просто полагаем, раздельно, неподвижно–изолированно полагаем, закрывая глаза и на становление, и на ставшее. Вся эта категориальная совокупность дана тут только в свете раздельных полаганий. Можно также сказать, это арифметическое число есть синтез конечного и бесконечного в конечном.

Выдвигание второй и третьей категорий создает еще два новых типа числа. Понимание числа по типу становления создает нам сферу инфинитезимального числа, или становящейся бесконечности, а выдвигание ставшего — сферу трансфинитного числа, или завершенной бесконечности. Всех этих вопросов мы уже касались в предыдущем, и сейчас для нас важно только отграничение инфинитезимального типа числа.

Предложенное отграничение достаточно ясно говорит нам, в чем инфинитезимальный тип совпадает с арифметическим и трансфинитным и в чем резко от них отличается.

Если не гипостазировать понятия метафизически, то вовсе нельзя считать, что в бесконечно–малом математического анализа или даже в непрерывности ровно нет ничего раздельного и изолированно–конечного. Если бы действительно в непрерывно следующей прямой абсолютно не было никакой раздельности, то она просто превратилась бы в одну точку. Ведь как прямая, напр., ни непрерывна, мы все же переходим по ней, т. е. переходим от одной ее точки к другой. Как же это было бы возможно, если бы в непрерывности не было никаких прерывных точек? Самая непрерывность есть не что иное, как сплошное заполнение прерывного. А если этого прерывного нет, то и заполнять нечего, т. е. нет и самой заполненности, нет самой непрерывности. А я думаю, что даже и точки нельзя мыслить вне категории раздельности. Но это уже другое. Важно то, что в бесконечно–малом и в непрерывности обязательно есть раздельность и прерывность, и в этом—тождество анализа с арифметикой.

Равным образом едва ли сейчас найдется такой глупец, который стал бы мыслить натуральный ряд чисел вне всякой непрерывности. Я не буду здесь входить в глубину логической теории натурального ряда, но достаточно будет уже и такого формального соображения. Допустим, что натуральный ряд чисел есть

Скачать:PDFTXT

Диалектические основы математики Лосев читать, Диалектические основы математики Лосев читать бесплатно, Диалектические основы математики Лосев читать онлайн