Скачать:PDFTXT
Диалектические основы математики

думают, что множество можно определить вне категории инобытийно–числового гипостазирования. Они ошибаются тут точно так же, как и тогда, когда думают, что возможно какое–то множество вообще и что не всякое множество может быть мыслимо вполне упорядоченно. С точки зрения беспристрастной логики, т. е. для чистой мысли, только и может существовать вполне упорядоченное множество, и никакое другое. Все прочее есть только абстрактные моменты, которые, конечно, необходимо изучать каждый в отдельности, памятуя, однако, что всякий абсолютный отрыв этих моментов от цельного понятия множества грозит провалом самого предмета, что и происходит, когда, отрывая множество от идеи порядка, просто покидают сферу теории множеств и переходят в обычную, я бы сказал, пошлую арифметику.

c) С другой стороны, мы тут же должны отметить, что, несомненно, есть полный смысл в том, чтобы вводить в теорию множеств понятие мощности и эквивалентности, отличая их как от чисто арифметических конструкций количества и равенства, так и от дальнейших построений в теории множеств относительно типов и подобия. Только вводить их надо не так, как это делается обычно. Систематическое изложение всех этих вопросов мы проводим в соответствующем отделе нашего исследования; здесь же скажем только несколько слов—для того чтобы оправдать понимание всякого множества как потенциально упорядоченного множества, да и то сделать это целесообразно только при разъяснении аксиомы подвижного покоя (§ 52).

Вопрос сводится, к разным диалектическим ступеням упорядочивания. Математики думают, что упорядочивание может быть разным только в смысле различия частей множеств, с каковой точки зрения «вполне упорядоченным» множеством называется такое, каждая часть которого имеет «первый элемент». Но понимать так упорядочивание— это значит то же самое, как если в геометрии вместо различия вида кривых проводили бы только различие в их длинах. С диалектической точки зрения существует несколько форм более глубокого упорядочивания, являющихся формами не самих упорядоченных множеств, но формами самой категории их упорядочивания (§ 52. 4). К числу этих форм принадлежит и то упорядочивание, которое при взаимном сравнении множеств порождает из себя картину эквивалентности и категорию мощности. В данном месте мы только запомним, что всякое множество так или иначе связано [с ] инобытийно–числовым гипостазированием, т. е. потенциально с идеей порядка. Интересует же нас здесь совсем не самое упорядочивание (это всецело относится к области проявления категории подвижного покоя), но, высказывая что бы то ни было о множестве, нужно помнить, что множество (в особенности конечное) только и отличается от обыкновенного арифметического числа идеей инобытийно числового полагания.

3. Имея все это в виду, как ответить на вопрос о проявлении категории самотождественного различия в области множества?

Множество есть число, возвратившееся из инобытия к самому себе. Арифметическое число есть просто число. В нем не положено никакого различия между ним самим как бытием и каким–нибудь инобытием, которое было бы внешним в отношении него. Число по своему смыслу есть вследствие этого то же, что и число по своему бытию, т. е. по актам своего полагания. Сколько раз случился акт полагания, столько единиц мы фиксируем и в числе. Его смысловое, т. е. в данном случае количественное, содержание находится в полном соответствии с его бытийным содержанием; и даже нельзя сказать, что тут происходит «соответствие». Соответствовать одно другому может тогда, когда эти взаимно соответствующие предметы как–то отличны друг от друга. В арифметическом же числе не положено самого различия между его смыслом и его фактом. И это понятно, потому что различие между тем и другим предполагает переход чистого смысла в инобытие. А число арифметическое есть чистый смысл.

Что теперь происходит в экстенсивном числе и в геометрической совокупности? Здесь инобытие чистого числа. Это значит, что и тождество тут инобытийно, равно как и различие инобытийно. Инобытийное различие — это значит различие не чисто смысловых актов, но различие таких актов полагания, которые сами по себе еще ничего не говорят о различиях смысловых, о смысловых полаганиях. В арифметическом числе акт полагания равносилен акту смыслового различия. В геометрической же совокупности акт полагания еще ничего не значит как смысловое полагание. Это и есть признак того, что число перешло в свое инобытие. Оно расползается тут по актам своего полагания, но это совершенно не касается его смысловой разделенности, которая или прямо отсутствует (как в континууме), или обладает актами инобытийной связанности упомянутых актов (как во всякой геометрической фигуре).

Множество совмещает в себе все особенности и интенсивного числа, и экстенсивной фигурности[22 — Клейн сообщает, что сам Кантор сказал ему однажды, что он, Кантор, хотел достигнуть в теории множеств «истинного слияния арифметики и геометрии» («Элем, матем. с т. зр. высшей». 1933. I 397).]. Множество арифметично, ибо вся его математическая судьба разыгрывается в чисто числовой сфере, и тут нет и помина о каком–нибудь пространстве. С другой стороны, множество есть всегда инобытийное иолагание, откуда образуется и упорядоченность, т. е. некая фигурность, а это уже заставляет вспомнить о геометрии. Откуда получается фигурность в экстенсивном числе? Она получается из того, что акты полагания различным образом расставлены. Но почему они различным образом расставлены? Потому что имеется в виду не просто самый акт полагания (и их количество), но и то поле, на котором совершается полагание, которое, будучи измеренным, и дает различное расстояние и промежутки. Это и значит, что тут существенную роль играет инобытие, ибо «поле», где совершаются акты полагания, в точном диалектическом смысле есть только иное, чем самые акты. Теперь спрашивается: а если будет разная «расставленность» актов в самом числе, то как возможна такая конструкция? Ясно, что чистое экстенсивное бытие будет здесь вобрано в сферу самого числа и произойдет синтез чистого числа и чистой его инобытийности. Когда такой синтез произведен, мы получаем понятие множества. Но тогда числу необходимо вернуться из инобытия к себе самому, пережить отрицание своего отрицания и от этого получить новое утверждение.

В общей диалектике доказывается, что отрицание отрицания никогда не приводит к простому повторению того, что уже было утверждено. В синтезе тезис не просто повторен, но дан в соответственно новом плане; он здесь не только просто он, но еще и свое иное, еще и все инобытие, от которого он, взятый сам по себе, так резко отличался. Во множестве мы имеем как раз прекрасный пример этого диалектического возвращения к самому себе: тут дана и вся числовая природа, и вся инобытийно–геометрическая, но это уже не есть ни арифметическая, ни геометрическая совокупность, а нечто третье, высшее и более общее.

4. В связи с этим аксиома самотождественного различия примет форму, аналогичную с геометрией, но с переходом к чисто числовой интерпретации. В геометрической совокупности даны абсолютно изолированные по акту своего полагания элементы. Но в геометрии они даны сами по себе, без влияния на числовое содержание совокупности. Здесь же смысловое содержание множества будет в точности соответствовать инобытийным актам полагания. Соответственно изменится и формулировка аксиомы.

Аксиома самотождественного различия в теории множеств: множество есть совокупность абсолютно изолированных элементов, возвратившихся из инобытия к самим себе. Или подробнее: множество есть совокупность элементов, абсолютно изолированных по актам своего полагания, но отождествленных или различенных в точном соответствии с этими актами, однако же в их чисто числовом понимании.

5. Эту формулу выражают в теоретико–множественной аксиоматике иначе. Даже, собственно говоря, нельзя и сказать, что иначе. Дело в том, что обычная аксиоматика, с которой приходится встречаться в изложении теории множеств, слишком слепая и связанная; и никогда не знаешь, почему авторы берут эти, а не другие аксиомы и почему дают им то, а не иное выражение. Поэтому можно говорить только о более или менее отдаленном соответствии наивно–эмпирических обобщений конкретной теоретико–множественной аксиоматики с нашими аксиомами, выведенными в строжайшей системе с сознательным применением самого глубокого и точного философского метода—диалектического.

Именно, нашей аксиоме самотождественного различия в теории множеств соответствует, по–видимому, та аксиома Цермело и других, которая известна под названием аксиомы объединения, хотя и т. н. аксиома спаривания, по–видимому, говорит в значительной мере о том же самом. Аксиома объединения (Vereinigung) гласит у Цермело— Френкеля так: «Если т есть множество, содержащее по крайней мере один элемент, то существует объединенное множество, которое содержит в качестве элементов все вместе элементы т и также—только эти». Аксиома спаривания (Paarung) гласит: «Если а и b—два различных множества, то существует множество <д, ft), которое содержит в себе множества а и ft— и только их — и которое может считаться парой а и ft». Взятые сами по себе, эти аксиомы весьма важны, потому что очень важно отметить различие отношения, в которое вступают между собою элементы разных множеств в зависимости от объединения самих множеств. Так, если город состоит из улиц, а улицы — из домов, то дома суть элементы вовсе не города, а только улицы; если дома в каком–то смысле могут считаться элементами города, то это надо фиксировать специально, что, по–видимому, и сделано в «аксиоме объединения». То же соответственно и в «аксиоме спаривания».

Однако такая формулировка весьма формалистична и недостаточна. Прежде всего, тут совершенно не подчеркнут спецификум множества; и аксиома сформулирована так, что она применима и к любой совокупности, и прежде всего к чисто арифметической. Эта аксиома говорит ведь только то, что если мы имеем сумму 5 и 7, то она будет содержать в себе все единицы пятерки и все единицы семерки, и только их. Такая безобидная вещь, конечно, тоже очень интересна, но место ее в арифметике, а не в теории множеств. Далее, совершенно не показано, зачем понадобилась такая аксиома и как она связана с самим понятием множества. Между тем в нашей — чисто диалектической — дедукции со всею ясностью показано, откуда получается такая аксиома и каково специфическое значение ее в теории множеств. Именно, показано, каким образом множества, инобытийные одно в отношении другого и, следовательно, являющиеся только частями какого–то другого, более общего множества, могут слиться в новое множество, в котором и не узнаешь никаких бывших самостоятельных «частей», но в котором все элементы всех объединенных множеств сольются в новую цельность и подчинятся новой смысловой структуре. Тут важно не то, что два множества можно объединить в одно целое (это обычно делается и в арифметике с любыми числами), а важно то, что из этого объединения получается совершенно новая смысловая структура, новая цельность, имеющая весьма мало общего с каждым из объединяемых множеств, но заново освещающая и переделывающая элементы этих первоначально данных множеств. Это и зафиксировано в нашей основной формулировке.

§ 48. Формулировка трех выведенных аксиом при помощи понятий элемента и части.

1. Эта аксиома самотождественного различия может быть

Скачать:PDFTXT

Диалектические основы математики Лосев читать, Диалектические основы математики Лосев читать бесплатно, Диалектические основы математики Лосев читать онлайн