Скачать:PDFTXT
Диалектические основы математики

предикатом является одно и то же множество, и можно сколько угодно взаимно их переставлять и получать каждый раз утверждение, обратное предыдущему. Однако единственный здравый смысл этой антиномики заключается в выше развитой антиномике целого и всего, или целого и частей.

с) Но даже если брать термин «множество всех частей» в специфическом теоретико–множественном значении, то и тут дело не обойдется без антиномии, хотя формулировать ее можно иначе. А именно, «целое» и «часть» могут находиться в диалектическом противоречии только тогда, когда они рассматриваются в качестве чистых понятий (как это и сделано у нас выше), т. е. когда эти понятия сами являются самостоятельным субъектом со своей собственной судьбой, или самостоятельным организмом, а не обладают только лишь инструментальным характером, не оказываются только лишь средством, которое употребляет какой–то другой субъектчеловек») для целей осмысления чуждого инобытия. Как чистое инобытие смысла есть его становление, т. е. его бесконечное распыление, так чистый смысл есть восстановление инобытия, т. е. его бесконечная собранность. Так «движение» есть инобытие «покоя». Но если движение совершается с бесконечной скоростью, то движущееся сразу находится во всех точках бесконечности; и так как дальше бесконечности уже нет никаких других точек (поскольку всех их она уже вместила в себе), то такое движение с бесконечной скоростью вполне тождественно с покоем. Поэтому диалектика отличается от прочих способов рассмотрения понятий тем, что она берет эти понятия как бесконечные сгустки бытия, как пределы. А в математике только там воочию видна диалектика, где идет речь о бесконечности, так как конечные величины хотя и подчинены диалектической антиномике, но последняя в них не выявлена непосредственно, а только с необходимостью предполагается при достаточно систематическом подходе.

Итак, «множество всех частей» множества должно с необходимостью и воочию выявить антиномику целого и частей в том случае, если будем оперировать с бесконечным множеством. И действительно. Пусть мы имеем множество ? всех вещей. Поскольку множество ? всех частей этого множества своею мощностью выше этого последнего, постольку множество ? эквивалентно только части множества т. Но из чего состоит х? ? состоит все из тех же вещей, из каких и ?, т. е. всякий элемент ? есть и элемент ?. А это значит, по указанному выше определению части, что ? эквивалентно некоторой части ?. Но если ? и ? эквивалентны частям друг друга, то, опятьтаки по указанному выше, и сами ? и ? эквивалентны. Итак: ? и ? и эквивалентны, и неэквивалентны. х, как множество всех частей ?, не эквивалентно ?; но так как ? есть множество всех вещей, то никакое ? не может его превзойти, и, будучи столь же бесконечным, оно совпадает с ?.

Поэтому, если среди аксиом учения о множествах попадается и аксиома о Potenzmenge, о множестве всех частей множества, то mutatis mutandis[24 — с соответствующими изменениями (лат.).] и она не бесполезна для иллюстрации антиномики частей и целого. Эта аксиома формулирована у Френкеля так: «Если существует множество ш, то существует и множество U, которое содержит в качестве элементов все подмножества га, и только их».

§ 49. Аксиома самотождественного различия в теории вероятностей.

1. Прежде чем формулировать аксиомы теории вероятностей, сделаем ряд замечаний, которые послужили бы к философскому уяснению своеобразия всей той совершенно специфической области в дополнение к общей установке, намеченной в § 9. С понятием вероятности мы вступаем в область того, что в логике называется модальными категориями, среди которых обычно насчитывают три — необходимость, возможность и действительность. Надо дать элементарное разъяснение этих категорий.

2. До сих пор мы не встречались с этими категориями. Почему? Это было потому, что мы имели дело исключительно только с самим смыслом (с «идеальным» бытием). Беря смысл сам по себечисло как число, — мы не можем сказать о нем ни того, что оно необходимо, ни того, что оно возможно, ни того, наконец, что оно действительно. Ибо эти три сферы нуждаются в числе и без него невозможны, само же число не нуждается в них и обсуждаемо само по себе. Число «пять» одинаково может быть и необходимым, и возможным, и действительным. Значит, самый смысл пятка нисколько не зависим от этих сфер. Что же получается при переходе в эти сферы? Получается то, что из сферы смысла мы должны перейти в сферу факта, к инобытию смысла, но не в том смысле, как мы находим инобытие внутри самого числа (и получали интенсивное, экстенсивное и эйдетическое число), а в том смысле, что мы перешли к инобытию в отношении всей вообще сферы числа. Теперь мы оперируем не просто с моментами чистого смысла, но все время смотрим на сферу возможного их осуществления, как бы примеряем их к действительности, наблюдая степень их реальности, степень возможного осуществления. В этой общей области взаимоосвещения смысла и факта и зарождаются категории модальности. Их мы должны, однако, наметить подробнее и яснее, чем это обычно делается в логических исследованиях.

3. Возьмем тот или иной момент чистого смысла. Вообразим себе, что этот момент может предстать перед нами как осуществленная, овеществленная, фактическая действительность. Но мы пока не будем ничего предпринимать для осуществления этого смысла. Мы только запомним, что это осуществление должно потребовать каких–то новых актов, каких–то усилий с той или другой стороны, чтобы стать реальной жизнью. Каждый момент фиксируемого нами смысла должен превратиться в какую–то реальную силу или подвергнуться воздействию чьей–то силы; без этого невозможно никакое осуществление. Имея это в виду, обратим свои взоры на чистый смысл. Он, видим, есть полная этому противоположность. В нем все вытекает само собою из целого и из отдельных моментов. Тут нет никаких «вещей», которые надо было бы «двигать»; тут нет никаких сил, без наличия которых ничего не осуществилось бы. Тут все ясно само собою, независимо от того, осуществляет это кто–нибудь или нет. Даже наша собственная мысль тут неважна. Я, например, могу не уметь логарифмировать, но самый логарифм от этого нисколько не страдает. Даже если бы никто никогда не логарифмировал и человечество не имело бы об этом никакого представления, все равно логарифм был бы логарифмом и, в частности, природные процессы так же осуществляли бы в себе эту функцию, как они осуществляют ее и сейчас, при нашем знании логарифмов. Вот эта точка зрения, когда мы противопоставляем смысл его факту без фиксирования, однако, самого факта, и ведет к установке необходимости смысла. Смысл сам по себе не есть необходимость. Но когда смысл берется на фоне своего осуществления, хотя в то же время само это осуществление не фиксируется, а только присутствует отрицательно как принцип, то так модифицированный смысл есть необходимый смысл, необходимость.

Смысл факта в освещении факта, но без самого факта есть необходимость. Факт же смысла в освещении смысла, но без самого смысла есть случайность. Необходимость и случайность, следовательно, возникают в сфере взаимоосвещения смысла и факта, но в условии отсутствия того члена, в сфере которого мыслится данный член. Бытиесмысл, для того чтобы стать бытием–необходимостью, должен отличаться от своей противоположности, потому что мыслится как окруженное темным фоном того, что не есть бытиесмысл. Что это именно такое, можно и не знать. Знаем только, что кругом нечто такое, что не есть и чистый смысл, не есть и чистое бытие. При желании мы можем перевести глаза с этого зафиксированного чистого бытия–смысла на смешанное и мутное бытиефакт. Но тогда первое будет мыслиться как окружающий фон, вернее, как неприступные границы, и тогда чистое бытиесмысл станет неясным, присутствующим только отрицательно, как принцип возможных осуществлений. Получается бытие случайное. Когда мы хотим мыслить бытие, алогическим фоном для этого (или, как говорят, диалектическим отрицанием этого) обязательно является инобытие, когда мы мыслим смысл, обязательно в качестве возможного принципа примышляется внес–мысловая данность. Но когда мы мыслим необходимость, требуется отрицательное примышление случайности. Но это бытие исключает из себя всякую замутняющую его стихию, всякую нелепость и недостоверность, т. е. попросту всякое его отрицание, хотя последнее и должно быть положено вне самого бытия, чтобы это бытие могло от него отличаться. Точно так же случайность есть бытие, но это бытие исключает из себя всякую достоверность и закономерность, т. е. всякое свое полагание, утверждение (ибо полагание ведет к различению, к тождеству, т. е. к фигуре и т. д., т. е. к закономерности), хотя это полагание и должно мыслиться вне бытия случайности, чтобы было от чего этой последней отличаться. Поэтому более или менее точно можно сказать так.

Необходимость есть бытие. Необходимость есть бытие, которое полагает себя путем полагания вне себя своего отрицания, перенося свое самоотрицание из себя за пределы себя. Случайность же есть бытие, которое полагает себя путем отрицания себя внутри себя, т. е. путем самоотрицания, перенося свое самоотрицание извне на самого себя.

4. Смысл и факт есть абсолютная противоположность, т. е. хотя они и предполагают одно другое, но на них самих не отпечатлена эта взаимопредполагаемость. Это есть противоположность для иного. Чтобы она стала противоположностью для себя, т. е. чтобы каждый из ее членов отобразил на себе свою противоположность иному, необходима перестройка того и другого члена. Уже необходимость и случайность есть такие категории, которые демонстрируют собою некое взаимное сближение обоих членов изучаемой противоположности. Именно, в то время как «смысл» предполагает свое явление, т. е. факт не сам по себе, но в чьем–то постороннем сознании, «необходимость» уже в самом своем логическом содержании предполагает соотнесенность со «случайностью». Правда, смысл отображает здесь фактическое бытие пока еще очень абстрактно; а именно он покамест только требует, чтобы оно просто присутствовало, чтобы оно было вполне принципиально. Тут А указывает на то, что где–то и как–то есть еще и В, что этого В не может не быть принципиально, в то время как раньше А существовало так, что по нему нельзя было узнать, есть ли где–нибудь В (хотя мы–то и знали, что оно где–то обязательно есть). Однако возможно, что но А мы узнаем не только о принципиальном наличии В, но еще и о содержании этого В, о его свойствах, о его смысле, так же как и по В узнаем о свойствах А. Это будет уже гораздо более интимное воссоединение смысла и явления, и тут будет недостаточно — с точки зрения модальности — одной пары категорий необходимости и случайности. Смысл в свете факта, но без самого факта есть необходимость. Необходимость же в свете случайности, но без самой случайности есть вероятность. Точно так же: факт в свете смысла, но

Скачать:PDFTXT

Диалектические основы математики Лосев читать, Диалектические основы математики Лосев читать бесплатно, Диалектические основы математики Лосев читать онлайн