смысла, или, другими словами, законченность и различимость предела должна раствориться в хаотической и неразличимой бездне фактического становления. И это возможно только в том случае, если непрерывность перестанет быть и голой протяженностью, исполненностью, и голой, неохватной процессуаль–ностью и перестанет содержать в себе идеальный смысл только как невыполнимое задание (предел). Но что же такое протяженность, содержащая в себе и свое ставшее, и самый смысл этого ставшего становления? Это, несомненно, есть некий образ, некая выразительная форма, где всякое различение снова (как в чисто идеальной области) влечет за собой и различение по факту, но тут различение происходит не до факта, а после факта, после инобытийного осуществления, так что различение обладает здесь не просто идеальной бесплотностью чистого ума, но еще и активно полагающей определенно сконструированную сферу инобьггийной действительностью. Прежний «предел», к которому мы пришли в связи с категорией ставшего, должен перестать быть только идеальным заданием и должен быть конструирован как реальная выразительность каждой точки алогического становления. Предел должен быть как бы окутан этим становлением со всех сторон; и мы должны как нащупывать его в самом становлении, так и нащупывать, полагать становление при полагании самого предела.
Такое понимание непрерывности лежит в основе постулатов Дедекинда и Кантора.
b) Дедекинд формулирует аксиому непрерывности так:
«Если все точки прямой распадаются на два класса такого рода, что каждая точка первого класса лежит влево от каждой точки второго класса, то существует одна, и только одна точка, которая производит это разделение прямой на два класса, это рассечение прямой на два куска».
С первого взгляда совершенно не видно, почему постулат непрерывности Дедекинда обладает указанными выше свойствами. Чтобы это уразуметь, начнем с житейских образов. Когда я смотрю сейчас на георгины, то их пышные темно–красные цветы хотя и составляют нечто целое со всем садом, но это целое дано тут в прерывных образах. Когда же я с георгин перевожу глаза на небосклон, то я вижу, что густая синева в зените постепенно, непрерывно переходит в голубизну ближе к горизонту и на самом горизонте почти уже теряет всякий голубой оттенок и становится белесоватой и почти белой. Наконец, когда я смотрю просто в зенит, то никакого перехода из одного цвета в другой я вообще не замечаю, и переход происходит только по вполне однородному густо–синему полю.
Аксиома непрерывности, основанная на чистом становлении, предполагает переход по одному пустому и равномерному пространству. Тут просто происходит бесконечное количество актов полагания, слившихся в одно общее протяженное полагание, т. е. тут полагание есть полагание только бы гия, чистого бытия, вне всякой качественности. Тут имеются в виду только самые акты полагания и совершенно игнорируется смысл того, что именно полагается. С другой стороны, аксиома Архимеда, основанная на четком различении одного заполненного пространства от другого, вовсе не говорит о чистом становлении в непрерывном потоке, но только говорит о тех различиях, которые вносятся в этот поток едино–раздельной структурой числа. Аксиома Архимеда относится к непрерывности в аспекте едино–раздельной струкгуры того, что вовлечено в поток непрерывности. Это есть непрерывность георгин, левкоев, роз, резеды и пр. цветов на общем фоне сада. Ведь сад тоже есть нечто целое, и эта целость непрерывно разлита по всем отдельным цветкам и деревьям, входящим в состав сада. Вот о такой–то непрерывности и говорит аксиома Архимеда. Это непрерывность прерывных предметов.
Наконец, можно переходить и от одного предмета к другому, от одного качества к другому и все же соблюдать непрерывность не как непрерывность прерывного, но именно как становящуюся непрерывность, как непрерывность чистого становления. Для этого нужен только постепенный переход от одного качества к другому, непрерывное изменение, скажем, синего в голубой. Тут, следовательно, будут происходить не просто акты полагания неизвестно чего, но вместе с этими актами будет полагаться и определенная качественность. С «бытием» будет вместе полагаться и «наличное бытие», но то и другое сольется в одну новую, уже энергийно–выразительную безразличность, так что и бытие будет становиться, и сама качественность будет в той же мере непрерывно становиться.
Вот это–то качественное, образное, или, как мы выражаемся, [эту ] энергийно–выразительную непрерывность, и имеет в виду Дедекинд. А именно, для чего ему понадобилось делить прямую на два класса точек? Предыдущие аксиомы непрерывности вполне обходятся без этого. Понадобилось ему это потому, что он при всем бытийственном переходе одних точек в другие, при всей взаимной неразличимости все же хочет их как–то различить, сохранить их качественное своеобразие. Точно так же, как и мы, хотя и видим постепенный переход от синего к голубому, все же совершенно определенно различаем синий цвет от голубого, точно так же и Дедекинд для демонстрации явления непрерывности прежде всего указывает на полную прерывность, на полную различимость и даже раздельность двух классов точек. Что бы тут ни происходило, но требуется, чтобы было два различимых класса точек, так как только этим путем и можно сохранить их качественное своеобразие. Но что же оказывается дальше? А дальше оказывается, что эти два класса разделены только одной и единственной точкой, что конец правой стороны линии, точка разделения и начало левой стороны линии оказываются одной и той же одной и единственной точкой. Это и значит, что синее переходит в голубое постепенно, непрерывно[36 — Определение непрерывности у Р. Дедекинда. Непрерывность и иррацион. числа. Пер. С. Шатуновского. Од., 1909.].
Таким образом, если под аксиомой Архимеда лежит интуиция раздельных тел, под аксиомой непрерывности в аспекте бесконечного процесса лежит интуиция пустого и темного пространства, то под аксиомой Дедекинда лежит интуиция поля, качественного пространства, расцветающего в непрерывном разнообразии своих красок.
Интересным является также и постулат Кантора о непрерывности, вызванный сходными же интуициями. Кантор[37 — 1871. V 128.][38 — В рукописи сноска к этому месту не сохранилась. Возможно, имеется в виду: Mathemathische Annalen. Berlin, 1872. Bd. 5. S. 128.] говорит: если на прямолинейном отрезке ОМ имеется два неограниченных ряда отрезков OA, OB, ОС, OA’, OB’, ОС… из которых первые растут, а вторые уменьшаются таким образом, что отрезки АА’, В В’, СС… постоянно уменьшаются и в конце концов становятся меньше всякого данного отрезка, то на отрезке ОМ существует такая точка X, что ОХ больше, чем все отрезки первого ряда, и меньше, чем все отрезки второго ряда.
В этом постулате Кантора лежит тот же принцин, что и у Дедекинда, но в то время как последний подчеркивает в одном энергийном образе момент устойчивости, стабильности процесса нарастания, у Кантора, наоборот, подчеркивается момент подвижности этого нарастания. У Дедекинда каждая точка процесса квалифицируется сразу тройным образом — как конец предыдущего периода, начало последующего и как точка, отделяющая одно от другого. У Кантора, наоборот, каждая точка процесса мыслится как только достигаемая в этом тройном смысле; она как бы еще только собирается быть концом одного, началом другого и разделением. Обе картины — и Дедекинда, и Кантора — рисуются на фоне синтетически–качественной, энергийной выразительности. Постулат Дедекинда, другими словами, есть диалектический синтез постулата Архимеда и постулата становящейся непрерывности (синтеза) при посредстве постулата Вейерштрасса.
§ 61. Аксиома непрерывности в отдельных математических науках.
1. Формулировка аксиом непрерывности, развитая в предыдущем параграфе, легко приобретает и чисто арифметическое, и чисто геометрическое значение, стоит только «числа» заменить «отрезками» (или другими геометрическими понятиями). Поэтому нет нужды загромождать изложение отдельной формулировкой принципа непрерывности в арифметике и в геометрии.
Стоит, может быть, только остановиться на этой аксиоме в применении к теории множеств и к теории вероятностей, так как здесь существует в математике более своеобразная терминология.
2. Что касается теории множеств, то здесь учение о непрерывности можно формулировать при помощи понятий полного и сцепленного множества, которые определяются следующим образом. Сцепленное множество есть то, в котором между каждыми двумя элементами можно иметь еще один элемент. Ясно, что понятие сцепления возникает на основе категории непрерывности в аспекте его становления (аналогично § 59.5). Полным называется такое сцепленное множество, в котором присоединение каждого нового элемента делает этот последний или наибольшим, или наименьшим. Нетрудно заметить и здесь некоторую аналогию с учением о непрерывности в аспекте ее полноты или непроницаемости (§ 59.4). В теории множеств непрерывным множеством и называют такое упорядоченное множество, которое является и сцепленным, и полным. Следовательно, аналогия с моментом ставшего (§ 59.6) должна привести к понятию предела. Самым общим положением здесь явится теорема Больцано — Вейерштрасса: «Всякое бесконечное ограниченное множество имеет хоть одну предельную точку».
a) Наконец, теория множеств выработала также большое учение, основанное на эманативно–выразительном понимании непрерывности. Конечно, можно было бы, в сущности, ограничиться и вышеприведенными постулатами Кантора и Дедекинда. Однако здесь они звучат достаточно отвлеченно, и теория множеств обладает в этом отношении более развитыми тезисами.
Именно, здесь прежде всего интересно определение континуума, данное Кантором. По Кантору, континуум есть совершенно–связное точечное множество. Чтобы понять диалектику этого понятия, вспомним некоторые основные определения из теории множеств.
b) Точка множества, не являющаяся для него предельной точкой, называется изолированной, и состоящее только из таких точек множество есть изолированное. Зато когда оно не содержит ни одной такой изолированной точки, оно называется плотным в себе. Однако множество может содержать свои предельные точки вне себя. В случае, когда оно содержит в себе все свои предельные точки, оно называется замкнутым. Замкнутое множество, когда оно не может быть представлено в виде суммы двух замкнутых множеств без общих точек, называется связным множеством. Другими словами, связность относится к предельным точкам множества так же, как сцепленность просто — ко всем точкам множества. И наконец, множество, которое является плотным в себе и замкнутым сразу, является совершенным множеством. Следовательно, совершенно–связное множество есть такое, которое состоит только из одних предельных точек, причем эти последние таковы, что между каждыми двумя из них можно указать еще одну такую же предельную точку.
Отсюда выясняется и все диалектическое строение континуума. Именно, для того чтобы существовал континуум, необходимо прежде всего сцепленное и полное множество. Сцепленность и полнота, вместе взятые, уже создают собою некоторую непрерывность. Однако что это за непрерывность в смысле диалектической судьбы самой непрерывности? Несомненно, сцепленность и полнота создают непрерывность только как бытие, как едино–раздельную структуру, т. е. как нечто только смысловое, только идеальное. Ведь континуум есть вид упорядоченности. Сцепленность и полнота тоже суть виды упорядочения. Но раз есть упорядочение, тем самым уже есть едино–раздельная структура, последняя же, взятая как такая, всегда есть нечто идеальное для того, в отношении чего она является структурой. Следовательно, непрерывность в смысле сцепленности и полноты множества есть идеальный момент континуума, бытие континуума, его едино–раздельная идеальная структура.