Скачать:PDFTXT
Диалектические основы математики

и понять математику именно как апофеоз здравого рассудка. Но что же это такое, односторонняя плоскость, или поверхность? Укажем сначала ее философское место и потом приведем и геометрический образ.

Мы знаем: всякая прямая имеет только одну бесконечно удаленную точку, что указывает на тождество положительного и отрицательного направления в смысле достижения этой точки. Мы знаем также, что в эвклидов–ском пространстве две параллельные встречаются в бесконечно удаленной точке, как бы изгибаясь одна другой навстречу. Но представим себе некую фигуру между этими двумя параллельными. Если верхняя параллельная склоняется книзу[79 — В рукописи оставлено место для рисунка.], а нижняя кверху, то, очевидно, фигура, заключенная между параллельными, перевертывается, прохождение через бесконечно удаленную область сопровождается перевертыванием. То, что в конечной области есть верх, то в бесконечности — низ, а что низ, то — верх. Поверхность, проходящая через бесконечно удаленную область, выворачивается наизнанку, гак что уже нельзя различить, где лицо и где изнанка. Таким образом, односторонность поверхности есть в философском смысле не больше как уход в инобытие, где уходящее отрицает самого себя, но где оно одновременно и находит себя, отождествляется с собою. Одна и та же философская идея заключается и в том, что прямая имеет только одну бесконечно удаленную точку, т. е. что направления тождественны, и в том, что фигура, проходящая через бесконечно удаленную точку, перевертывается, и в том, что эллиптическая плоскость одностороння. Ведь последняя есть символ бесконечности, т. е. она воплощает бесконечные отношения в конечной и, следовательно, выразительной форме. Поэтому то, что у Эвклида осуществляется только при условии предельного процесса, в геометрии Римана происходит уже в конечной области.

Яснее всего односторонняя поверхность представима на поверхности Мёбиуса [рис. 6 ][80 — На полях рукописи карандашом: рис. пов. Мёбиуса.]. Если в одной точке этой поверхности мы поместим и заведем часы, то, когда они пройдут всю эту поверхность и вернутся к исходной точке, мы заметим, что их стрелка движется теперь уже в обратную сторону. Если по средней линии поверхности Мёбиуса пройдет река, то мы, двигаясь вдоль одного берега, рано или поздно очутимся на другом берегу, хотя и без всякого переплывания с одного берега на другой по воде. Эти чудеса, творящиеся в эллиптическом пространстве, математически объяснимы слишком элементарно, чтобы можно было удивляться (идея односторонней поверхности), философски же это есть только логически последовательно проведенная идея бесконечности.

Однородность поверхности вполне ясна и на связке прямых. Если эти прямые образуют конус и его ось мы повернем на 180°, то образующая, которая раньше описывала коническую поверхность в одном направлении, теперь будет описывать ее в обратном, что и есть признак односторонности.

6. В настоящем контексте мы не будем подробно рассматривать виды выразительного пространства и ограничимся лишь краткими замечаниями.

a) Во–первых, пространство Римана может быть только эллиптическим. Когда мыслится, что всякая прямая пересекается с другой прямой не в одной, а в двух точках, мы получаем не эллиптическую Риманову, но сферическую Риманову геометрию. Используя нашу сеть сфер, мы теперь должны пару точек сети принимать не за одну точку, как в эллиптическом пространстве, но за две взаимно сопряженные точки. То же самое мы получим, если в качестве пра–символа сферического пространства возьмем связку лучей (вместо связки полных прямых). Тогда, по аналогии с эллиптическим пространством, точкой будет луч связки, прямойплоскость связки, плоскостью— вся связка, отрезком — угол между двумя лучами, углом на плоскости — трехгранный угол и т. д. Если же мы из центра связки лучей опишем шаровую поверхность радиусом = 1 и установим взаимно однозначное соответствие между лучами связки и точками поверхности, то полученная геометрия на поверхности шара будет полным пра–символом сферической планиметрии — стоит только под точкой понимать точку обязательно шаровой поверхности, под взаимно сопряженными точками—диаметрально противоположные, под прямойокружность большого круга, под плоскостью — поверхность шара, под отрезком—дугу большого круга, под углом — угол между окружностями больших кругов и иод треугольником — сферический треугольник. При всем сходстве с эллиптической системой тут и большие различия— вроде, например, того, что сферическая плоскость—двухсторонняя (она тут как бы дважды выворачивается и потому остается в первоначальном виде) или что полный угол составляет тут не два, а четыре прямых и т. д.

Если разница между обеими геометриями Римана есть разница геометрий связки прямых и связки лучей, то для прямой в одной связке мы находим два луча в другой и, следовательно, фигура в одном пространстве соответствует двум симметричным фигурам в другом пространстве, что каждой точке и двум прямым эллиптической плоскости соответствуют две различные, взаимно противоположные точки и две прямые с двумя общими точками сферической плоскости или что, вообще говоря, эллиптическая плоскость двойная[81 — Так в рукописи.].

b) Обеим Римановым геометриям противостоит геометрия Лобачевского, «гиперболическая». Ее пра–сим–вол — указанная выше гиперболическая связка окружностей. Тут мы находим бесчисленное количество окружностей и сфер, которые не пересекаются с данной окружностью или сферой. Можно сказать, что непересекающиеся окружности пересекаются здесь в мнимых точках, а две непересекающиеся сферы имеют общую мнимую окружность, которую всякая прямая, проходящая через точку О в этой плоскости, пересекает в двух взаимно обратных мнимых точках. Вместо того чтобы всем прямым пересекаться уже на конечном расстоянии, мы находим тут целых три категории взаимоотношения прямых. Две прямые определяют здесь или пучок сходящихся прямых (это есть и у Римана, и у Эвклида), или пучок параллельных прямых (как у Эвклида), или пучок расходящихся прямых. Последние и есть оригинальность плоскости Лобачевского. Этот пучок есть совокупность прямых, перпендикулярных к общему перпендикуляру двух данных прямых. Расстояние между двумя параллелями беспредельно растет в одном направлении и беспредельно убывает в противоположном. Поэтому происходит непрерывный переход от пересекающихся, сходящихся прямых через параллели к расходящимся. Если у Римана вовсе нет вещественных бесконечно удаленных точек <…> так что они пересекают эту область, но все еще не пересекаются в ней, а пересекаются где–то за ней, мнимо.

Пуанкаре дал замечательное по наглядности и осязательности истолкование пространства Лобачевского в эв–клидовских терминах. Оно сводится тоже к пра–символу гиперболической связки, но формулировано по–своему, ярче и определеннее. Пусть мы имеем некую прямую[82 — На полях рукописи карандашом: Богомолов рис. 27.], все точки которой (V N U…) являются бесконечно удаленными точками. Пусть мы будем считать точкой обязательно точку верхней полуплоскости, а прямой — полуокружность с центром на данной прямой или полупрямую, перпендикулярную к ней (она, как ясно, будет предельным случаем этих полуокружностей). Новой плоскостью мы станем считать только верхнюю полуплоскость, и вообще нижней полуплоскости для нас не существует. Тогда под параллельными прямыми придется считать полуокружности и полупрямые, которые имеют общий конец. На рис. [7 ] полуокружности U V и NN не имеющие общих точек, суть непересекающиеся. Полуокружности UPU’ и UV с общей точкой на данной линии параллельны. Пересекающимися прямыми здесь окажутся, например, VPV и UPU с точкой пересечения [.?] выше данной линии.

Вдумаемся в эту интерпретацию Пуанкаре. Мы видим, что пространство устроено здесь также по закону некоторой кривизны, так как мы принуждены толковать прямые в виде полуокружностей. Фиксируя себя в конечной области, мы начинаем замечать, что оба конца прямой, на которой мы поместились, уходят в бесконечность, но что это не та единая бесконечно удаленная точка, до которой доходят оба конца прямой в Эвклидовом пространстве. Это разные точки. Если эвклидов–ская полупрямая, уходя в бесконечность, получает только одну бесконечно удаленную точку, как бы только касается, дотрагивается до бесконечности, в гиперболическом пространстве перед нами открывается в этой бесконечности еще новая бесконечность, т. е. мы тут не просто дотрагиваемся до нее, но входим в ее глубину и, таким образом, охватываем бесконечность самой бесконечности. Сама бесконечность тут положена как таковая, ставши из мнимой (в эллиптическом пространстве) фактической, вещественной. На нашем языке это значит, что параболическое становление перешло тут в гиперболически ставшее. В конечной же области это сказывается бесконечно расходящимися прямыми, тем, что к данной прямой через данную точку возможно бесконечное количество параллельных. Если в пространстве Римана каждая точка, уходя в бесконечность становления, тут же и возвращается к себе, так что мы уже в конечной области созерцали этот диалектический круговорот, то в гиперболическом пространстве точка не только не возвращается к себе, но уходит в реальную, вещественную бесконечность, и не только это, но стремится в этой бесконечности утвердиться и осесть. Тогда пересечение двух прямых, прошедших через бесконечность, может быть только мнимым, т. е. оно попросту отсутствует вещественно и только идеально представляется.

Но пожалуй, интерпретация Кэли — Клейна еще более простая [(рис. 8)][83 — На полях рукописи карандашом: Лямин. Неэвкл. геом. рис. 23.]. Представим себе шар. Точкой пусть будет точка только внутри этого шара, прямой—его хорда и плоскостью—любое круговое сечение шара. Все точки на поверхности шара исключаются. Тогда пересекающимися прямыми окажутся только те, которые имеют общую точку внутри шара. Если иметь в виду прямую А В и точку М, то пересекаться с А В будут все прямые, исходящие из ? внутри угла AM В. Все же прямые за пределами этого угла не будут пересекаться с А В (вещественно, а будут пересекаться мнимо за пределами круга). Прямые МА и MB будут отделять все пересекающиеся прямые от не пересекающихся с прямой А В, т. ‘е. они будут параллельными в смысле Лобачевского. Мы видим, что непересекающихся, расходящихся прямых в этих условиях может быть сколько угодно, что бесконечно удаленные точки никогда не могут быть достигнуты (так как они исключаются с самого начала), что прямые ? А и MB образуют «равные» углы с «перпендикуляром» из ? и А В и т. д. Тут выполняются все аксиомы геометрии, за исключением аксиомы об единственной параллельной.

с) В данном месте нет надобности давать обоснование эвклидовой геометрии; тем более нет надобности как–нибудь иллюстрировать относящиеся сюда области.

Заметим только ради единства изложения, что пра–сим–волом Эвклидового пространства также может быть связка окружностей и сфер, причем именно параболического типа, т. е. когда все окружности и сферы имеют одну общую точку (см. выше, п. 5b). Пусть прямыми и плоскостями будут окружности и сферы сети, а точка останется в обычном виде. Другими словами, всякая окружность окажется символом бесконечно удаленной прямой, а параллельными прямыми окажутся все окружности, пересекающиеся в данной точке. Легко увидеть, что все до–выразительные аксиомы и Эвклидова аксиома параллельности вполне найдут себе место в так понимаемом пространстве.

d) Наконец, тот же Пуанкаре еще в одной старой работе[84 — Billetin de la Societe mathematique de France. Т. XV.

Скачать:PDFTXT

Диалектические основы математики Лосев читать, Диалектические основы математики Лосев читать бесплатно, Диалектические основы математики Лосев читать онлайн