Положенность может давать и не голый факт полагания, и [не] все полагаемое содержание целиком, а только некоторое содержание, частичное содержание. В таком случае необходимо расчленить и соответствующие математические понятия. Голая положенность понятия (т. е. в нашем случае числа) даст, очевидно, некую модификацию числа, а так как полагание в данном диалектическом месте есть полагание становления, становящееся полагание, то голая положенность числа приведет к становлению из прежнего, полагаемого числа в новое, модифицированное число. Такой непосредственный переход от одного непосредственно значимого числа к другому непосредственно значимому числу есть действие, операция (напр., сложение, умножение, дифференцирование и пр.). Та или другая степень наполнения этих операций и новое осмысление их через операционно выставленное понятие даст уже не просто самые операции, но их предназначенность для какой–нибудь специальной числовой установки. Это и будет теорема. Таким образом, математическая операхия есть число, данное в своем чистом становлении из одного числа другим, или просто чистое становление одного числа другим; другими словами — это числовое понятие (число), данное как чистое становление. Математическая же теорема есть число, данное в своем заполненном становлении из одного другим, или, проще, заполненное становление одного числа другим; это числовое понятие (число), данное как заполненное[110 — В рукописи: заполняемое.] становление. Тогда аксиома—это число, данное [кшс] самоадекватная определенность; это числовое понятие (число), данное как определенность числа. Ясно, что выставленные в предыдущем исследовании аксиомы суть именно определения, а не суждения вообще. Суждение более ослабленно, чем определение; оно — час–тичнее и неопределеннее. Суждению в математике соответствуют не аксиомы, а более частные положения, менее общие. Сюда относятся все математические операции со всеми соответствующими теоремами — все то, что выводится из аксиом как их более частный случай. Но здесь возможно еще одно членение, так как ставшее становление можно взять и со всем тем, что именно участвует в этом ставшем становлении, можно взять и как голый факт ставшести. И вот тогда–то мы переходим к умозаключению и к новому математическому понятию, к функции. § 76. Понятие функции[111 — В рукописи: функций.]. 1. Как суждение относится к определению, так умозаключение относится к суждению. Все же это есть повторение того, как суждение относится к понятию и как, наконец, понятие — к своему перво–принципу. Везде тут главным условием появления новой категории является акт полагания предыдущей категории. Перво–принцип полагает себя — образуется понятие, поскольку последнее есть совокупность признаков (т. е. некая определенность, т. е. ограниченность, т. е. положенность) и исчерпание, различение того, что само по себе неразличимо. Понятие полагает себя — образуется определение, в котором подчеркнута эта его исчерпанность. Определение полагает себя — образуется переход к становящемуся перечислению признаков, или суждение. Суждение образует себя — образуется умозаключение. 2. Когда высказывается: «Все идеалисты — контрреволюционеры», то это значит, что на общем фоне контрреволюции полагается понятие идеализма; отсюда это суждение об идеалистах. Сначала было положено понятие контрреволюции, и из этого получилось отграничение· контрреволюции ото всего другого, и тем самым в проведенных границах образовалась возможность появления отдельных видов контрреволюции. Тут могли быть архиереи, проститутки, кантианцы, фабриканты, содержатели притонов и пр. и пр. Мы совершаем некий определенный акт полагания в этой общей, но строго отграниченной области и получаем специальный вид контрреволюции — идеализм. Но пусть теперь мы положим не понятие, а некое содержание, — напр. суждение «все идеалисты — контрреволюционеры». Это значит, что мы очертили, отграничили новую область* которая благодаря именно своей огграни–ченности оказывается склонной к дроблению, к дальнейшему выявлению деталей. Среди идеалистов могут оказаться Деборины, Лупполы, Лосевы и т. д. Если мы совершим какой–нибудь акт полагания уже в этой только что отграниченной области, то это сейчас же приведет нас не к суждению (которое мы уже имели), но к совершенно иному логическому построению, к умозаключению. И мы получим: Все идеалисты — контрреволюционеры. [Лосев ] — идеалист. [Лосев ] — контрреволюционер. В умозаключении (так же, как и относительно суждения) возможна большая расчлененность. Суждение может быть взято как исчерпанность всего смыслового содержания полагаемого понятия; тогда это не суждение, а определение. В первоначальной диалектической конструкции этому соответствует не становление вместе с тем, что именно участвует в становлении, но чистое становление, чистые акты полагания (независимо от полноты или неполноты полагаемого содержания). Точно так же и умозаключение. Оно может быть взято вместе со всем своим конкретным содержанием и может быть взято чисто инобытийно, просто как формальная объединен–ность двух или ряда суждений, просто как вообще положенность суждения. Этому будет соответствовать в первом случае ставшее вместе с тем, что именно тут «стало»; и во втором — чисто ставшее, чистый факт перехода от одного суждения к другому (независимо от того, каково именно смысловое содержание фиксируемой ставшести). Если перво–принципу соответствует числовой перво–принцип, неразличимое перво–число, принципу (или понятию)— категориальная структура числа, определению — аксиоматика, суждению — отдельная математическая операция, определенному умозаключению — теорема вместе со своим доказательством, то чистому, голому умозаключению, из которого исключено все смысловое содержание и в котором оставлена только формальная последовательность суждений или актов полагания, этому умозаключению соответствует в математике понятие функции. 3. Когда мы пишем в математике [y = f (x)] — что мы имеем в виду? Мы просто имеем в виду, что с ? производится ряд действий. Пусть у = 3х + 5. Это значит, что мы возводим ? в квадрат, умножаем его на 3 и к этому прибавляем еще 5. Совокупность всех этих действий с ? и есть функция х. Но нужно ли для этого знать количественное значение ?? Это совершенно не необходимо. Когда мы говорим, что у есть функция ?, то этим мы как раз хотим сказать, что независимо от количественного значения ? [величина] у именно вот таким, а не иным образом зависит от х. Функция и есть эта зависимость между у их, рассматриваемая совершенно без всякого учета их количественного содержания. Ясно, что это та же картина, что и в чистом умозаключении. Беря чистое умозаключение, мы оперируем только с формальной последовательностью суждений; и так как в диалектическом смысле суждение есть становящееся полагание, то умозаключение как объединенность разных становлений есть, очевидно, не само становление, но его результат, т. е. не становление, а ставшее или, как еще иначе называют в диалектике эту категорию, наличное бытие. Это акт полагания как ставшее. Если бы мы имели в виду все смысловое содержание данного акта полагания, то нам пришлось бы выставить много разных суждений и, точно соблюдая их последовательность, дать такой вывод, который в точности бы соответствовал исходному акту полагания. Тогда это было бы доказательством исходного положения. Таково доказательство любой математической теоремы. Но мы тут отвлекаемся от смыслового содержания данного положения, и его законченное доказательство рассыпается на ряд отдельных умозаключений.’ Это и суть не [что] иное, как отдельные функции. В функции д> = Зх + 5 мы задачей имеем такие умозаключения:
1) у зависит от ?,
но ? тут взят как х. След., у зависит от х,
2) у зависит от л:,
но х взят тут как Зл:. След., у зависит от Зл:;
3) у зависит от Зл:,
но Зл: взято здесь как Зх + 5. След., у зависит от Зл: + 5.
Это наглядно показывает нам, что логическая сущность функции есть умозаключение. Функция есть строгое инобытие числа, и, вернее, не числа, а числовой операции. Само число — непосредственно; числовое, т. е. арифметически–числовое, бытие есть непосредственная числовая значимость. Числовая операция есть также бытие непосредственное. Таков натуральный ряд чисел и все арифметические числа вообще, таковы и все арифметические операции. Когда мы говорим «2» или «10» или «3 + 5» или <?> и пр., мы оперируем с непосредственным бытием, с непосредственной числовой значимостью. Когда же мы переходим к функции, то как раз эта непосредственная числовая значимость и пропадает. Число превращается в то, о чем ровно никакого суждения не высказывается в смысле непосредственной значимости, превращается в то, что может иметь такое <…> непосредственное значение, в х; и все действия, которые над этим ? производятся, суть действия опосредствованные, т. е. без всякого числового результата. Потому и действия эти, будучи сами по себе тоже бытием непосредственным (если их брать самостоятельно), становятся здесь характеристикой опосредствованной значимости бытия, чем–то в глубочайшем смысле инобытийным в отношении числа и числовых операций. Это судьба чисел в инобытии, взятая без всяких чисел; голая фактическая (потому здесь — «ставшее») положенность числа и его операций — без непосредственной данности самих чисел.
Итак, совершенно точно нужно сказать, что функция есть число, взятое как чистое умозаключение вне всякой непосредственной значимости того, что участвует в дан–ном умозаключении. Непосредственная же значимость числа, данная как заполненное определенным содержанием умозаключение, есть уже не функция, а доказанная теорема.
§ 77. Функционал и алгоритм (уравнение).
1. С диалектической необходимостью мы приходим наконец и к выразительному числу, к выражению, вернее, к числу как выражению. Если понятию соответствует натуральная структура числа[112 — В рукописи: тела.], определению—аксиома, суждению—действие и теорема, умозаключению — функция и доказательство^ то что же соответствует последней категории из принятых нами основных — выражению?
Выражение отличается от абстрактного смыслового содержания тем, что оно есть не мыслимое только, но еще и понимаемое. Понимать — значит отождествлять свое сознание с предметом настолько, что и он целиком реализуется в сознании со всеми своими логическими и алогическими связями. Это, однако, совсем не значит только мыслить. Предмет понимаемый как бы заново перекрывается смысловым слоем, которого не было в нем, когда он брался на стадии только мыслимого, т. е. абстрактного. Понимаемый предмет несет на себе печать того, кто его понимает, хотя это не есть что–нибудь ему чуждое; это только нечто такое, что выделено в нем, новая группировка его элементов. А это все одинаково реально, как и общий отвлеченный смысл. Выражение и есть предметный коррелят понимания. Выражение есть соотнесенность чистого смысла с его инобытием, но смысла не специального, не того или иного (ибо иначе возможно получение какой–нибудь еще до–выразительной категории, напр. становления или ставшего), но инобытие окончательно сформированного и осуществленного смысла, т. е. смысла, прошедшего и через становление, и через ставшее. Тогда, беря этот «ставший» факт смысла и соотнося заново с его инобытием, т. е. производя в нем новые членения, но уже не логические и hq алогические, но и те и другие сразу, тогда, и только тогда, мы получаем выражение смысла вместо самого смысла.
Выражение потому всегда предполагает категорию внешнего, категорию внутреннего и