как его именовать—это дело второстепенное. Это инобытие, повторяем, не может быть одним из чисел натурального ряда, потому что все эти числа уже предусмотрены в идее натурального ряда. Подлинное инобытие возникнет тут именно тогда, когда возникнут совершенно новые типы числа, возникнут на основе новых актов полагания в этой инобытийной по отношению ко всему натуральному ряду сфере, на основе нового инобытия этих актов, синтеза инобытия этих актов с их бытием и т. д. и т. д.
II. ТИПЫ ЧИСЕЛ (ИНОБЫТИЕ СУЩНОСТИ ЧИСЛА) 1. ВНЕШНЕЕ ИНОБЫТИЕ § 91. а) Положительное число.
Имея полное и законченное понятие числа в натуральном ряде и зная его диалектическое происхождение, мы переходим к тому трудному вопросу, который можно назвать проблемой классификации чисел. Труден этот вопрос, конечно, не технически, так как уже на первых страницах алгебры <…> математики с поразительной ловкостью и беззаботностью выставляют очень легкие и понятные определения того, что такое целое, дробное, рациональное, иррациональное[130 — В рукописи здесь и ниже: радикальное, иррадикальное.] числа, и в дальнейшем даже ни разу не возвращаются к определению этих чисел, считая их абсолютно ясными и понятными. Конечно, технически нет ничего проще понять, что такое, например, отрицательное или мнимое число. Для философа, однако, тут залегают огромные логические трудности, по общему обыкновению для философа: что понятнее всего профану, то непонятно философу, и что легко и понятно для философа, то составляет часто непреодолимые трудности для профана. Диалектическая классификация типов чисел, предлагаемая здесь, обладает чрезвычайно большой простотой, если только дать себе труд вдуматься в нее. Для мыслящего требуется здесь только самое элементарное владение диалектическим методом, попросту даже сказать, только понимание основной диалектической триады. Кому понятно вообще, как тезис переходит в антитезис и завершается, возвращаясь в себя, синтезом, тот без труда поймет прилагаемую ниже классификацию, и она будет для него простым и очевидным продуктом элементарного логического анализа. Впрочем, для понимания предлагаемой диалектики типов чисел надо преодолеть трудность гораздо большую, чем владение диалектическим методом. Надо отказаться от высокомерия математических учебников, претендующих на всезнание и решительно все на свете «понимающих» и «знающих». Забудем ту легкость, с которой мы оперировали в школе, когда учитель давал нам задачи с отрицательными и иррациональными величинами. Технически вычислительная легкость не имеет ничего общего с логической четкостью понятия. А мы хотим здесь добиться именно логической, и в частности диалектической, четкости.
2. а) Когда мы говорим о числе, т. е. о числе самом по себе, о числе просто, как оно налично в натуральном ряде чисел, мы не мыслим его ни положительным, ни отрицательным, ни рациональным, ни иррациональным, ни каким–нибудь иным. Понятие числа выводится сначала в виде числа просто. Нужен какой–то новый акт мысли, чтобы перейти от двойки просто к ( + 2), к положительной двойке, не говоря уже о переходе от двойки просто к отрицательной двойке, к ( — 2).
Может быть, этот переход от двойки просто к положительной двойке понятен легче всего, и проще всего формулировать его. В самом понятии «положительности» содержится то, без чего невозможен никакой диалектический переход, а именно содержится момент полагания, положения, утверждения, тезиса, того, что потом должно иметь свою особенную судьбу путем перехода в инобытие. Положительное число есть число как тезис, как акт полагания в сфере, инобытийной в отношении натурального ряда. Оно положено, утверждено мыслью, утверждено как некоторый мыслительный факт, как некая смысловая субстанция. То, что число есть число, и то, что число есть субстанция числа, — это совершенно разные вещи.
b) Существует ведь принципиально логическое различие между голой и простой идеей факта и самим фактом. Что это есть, кроме того, еще и разница чисто жизненная, или, так сказать, житейская, это не только не вызывает никаких сомнений, но в данном случае является слишком большой банальностью, чтобы ее фиксировать в таком голом бытовом смысле. Если я имею мысль о 100 рублях, это не значит, что я имею самую эту сумму 100 руб. в кармане. Однако с философской стороны тут перед нами различие прежде всего чисто логическое. Именно, всякий факт в отношении своей идеи есть инобытие этой идеи. Идея как тезис должна перейти в свое инобытие, чтобы стать фактом, вещью, субстанцией, действительностью. Это элементарное положение диалектики. Но интересно, что такая же противоположность идеи и вещи, сущности и явления, смысла и действительности, смысла и факта, субстанции на–лична и в каждом из членов этой [триады]. В пределах самой идеи можно различать идею и факт, идею и ее существование, а также в пределах действительности можно различать разные степени действительности, т. е. прежде всего устанавливать различие идеи и факта. Так, например, строительство какого–нибудь здания, какого–нибудь водопровода, канала и пр. есть, несомненно, нечто действительное, а не идеальное; это есть сфера фактов и субстанций, а не идей и чисто смыслового функционирования. И тем не менее в строительстве мы различаем инженерский проект, план, чертеж, с одной стороны, и физический труд рабочего, осуществляющего этот план, — с другой стороны. Не нужно быть особенно глубоким философом, чтобы здесь [увидеть] простую диалектическую триаду: проект, план, чертеж есть идея, смысл, сущность строительства — его тезис; физический труд рабочего есть факт, субстанция, явление, действительность строительства—его антитезису и, наконец, сама законченная постройка, где целиком осуществился проект и целиком осмыслился и оформился труд рабочего, постройка, которая не есть ни просто идея постройки и ни просто ее вещественная и материальная масса, она есть уже синтез указанных тезиса и антитезиса.
с) Вот точно так же можно различать и разные факты смысла, идейности — в пределах самого смысла и самой идеи. Тут тоже возможны свои триады, свои более абстрактные и менее абстрактные, более конкретные структуры. С переходом от числа просто к положительному числу мы как раз двигаемся от абстрактного к конкретному, от голого абстрактного числа, о котором еще ничего пока нельзя сказать, кроме того, что оно есть просто число натурального ряда, к тому конкретному пониманию числа, которое будет граничить уже с переходом в сферу механики и физики. И все–таки эти разные степени идеальности и конкретности, все эти диалектические триады осуществляются пока еще в пределах самого же числа, т. е. в пределах самой же идеи, и мы еще не переходим тут из сферы математики нилв сферу механики, ни в сферу физики, не говоря уже о дисциплинах еще более конкретных. Это инобытие натурального ряда, но все еще чисто числовое же, а не иное.
3. Итак, положительное число есть акт полагания числа, или число как факт и субстанция в сфере чисто же числовой. Или: положительное число есть числовой тезис, тезис, утверждаемый в сфере самого же числа; это смысловая субстанция, идеальная осуществленность числа в сфере инобытийно–числовой.
§ 92. b) Отрицательное число.
Так же не составляет большой трудности и категория отрицательного числа, хотя уже тут есть кое–что такое, что не сразу поддается анализу и не сразу фиксируется в точной формуле. Что отрицательное число есть антитезис положительного, это[131 — В рукописи: что.] как будто ясно само собой без всяких дальнейших пояснений. Однако слишком общее и формальное понимание диалектического метода способно затемнить и не развить некоторые существенные моменты, лежащие в основе категории отрицательного числа. Их мы сейчас и постараемся[132 — В рукописи: остерегаемся.] вытащить на свет диалектического сознания.
1. Отрицательное число противоположно положительному числу, как отрицание противоположно утверждению. Но если утверждение есть утверждение факта и субстанции (ибо всякое утверждение и полагание есть утверждение и полагание чего–нибудь), то отрицание есть отрицание факта и субстанции. Далее, это отрицание факта может быть или абсолютным, или относительным. Если факт отрицается абсолютно, то вместо бытия мы получаем просто небытие, пустоту, нуль. Этот случай отрицания малоинтересен; и, кроме того, он не есть то отрицание, которое мыслится в отрицательном числе. Здесь относительное отрицание, потому что отрицаемое здесь не просто отрицается, но отрицается с некоторым своим сохранением; тут вместе и отрицание, и некоторого рода утверждение. Заметим, что тут еще нет ничего оригинального по сравнению с обычной конструкцией диалектической триады. В диалектике мыслится не просто одно абсолютное отрицание, которое тотчас же привело бы к нулю всю диалектику, но одновременно и относительное отрицание, являющееся в силу этого переходом от одного диалектического члена к другому. Итак, отрицание, данное в отрицательном числе, есть отрицание не абсолютное, но относительное.
2. В чем же оно заключается? Полагание и утверждение есть полагание факта, как бы некой вещи, действительности, и отрицание есть род противополагания, а факту противоположна идея факта. Как факт есть инобытие идеи, так идея есть инобытие факта. Если тезис идеален, то антитезис фактичен; и если тезис указывает на факт, но антитезис—на идею. В нашем случае имеется отрицание факта. Стало быть, тем самым дан переход в инобытие факта, и притом в идеальное инобытие. Другими словами, отрицание факта, если оно относительное, т. е. если оно отрицается с некоторым своим сохранением, оказывается в то же время утверждением идеи факта, полаганием идеи факта. Мы тут сразу и отрицаем факт (отрицаем его как именно факт), и сохраняем его (утверждением его в идее, в его идее). — Итак, отрицание, данное в отрицательном числе, не только не есть абсолютное (а [есть] чисто относительное) отрицание, но, наоборот, есть тем самым некое новое утверждение, а именно утверждение этого факта в его идее, в его смысловой значимости.
3. В этом пункте, однако, легко сбиться с диалектического пути и спутать весь логический анализ типов числа. Именно, то утверждение числа в идее, которое полагается отрицанием, очевидно, опять–таки не есть абсолютное его утверждение в идее. Если бы это было так, то данная диалектическая стадия числа ничем бы не отличалась от того <…> чистого понятия числа, которое мы имели раньше, и отрицательного и даже положительного числа. Это было число само по себе, число просто, и никакой новости оно в себе не содержало бы, несмотря на наличие уже двух новых больших категорий — утверждения и отрицания. Очевидно, что как само отрицание числа в отрицательном числе мыслилось не абсолютно, но относительно, так и порождаемое этим отрицанием новое идеальное утверждение числа (вернее, утверждение, тождественное с этим отрицанием) обладает опять–таки не абсолютным, но относительным характером, т. е. в нем как–то сохраняется и указание на стихию действительности числа, на факт и субстанцию числа. Чистая идея числа не положительна и не отрицательна; и, <…> понятием чистого числа, ровно ничего нельзя определить и понять в отрицательном числе. Точно так же надо сказать, что и