Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Человеческое познание его сферы и границы

только в том случае, если имеется структурное определение «точки» и (в теории) отдельных точек, Такое определение должно достигаться посредством методов сходных с теми, которыми мы пользовались при определении «моментов». Здесь, однако, следует сделать две оговорки: во-первых, что наше многообразие точек должно быть трехмерным и, во-вторых, что точку мы должны определять как момент. Сказать, что точка P, находящаяся в одном времени, тождественна с точкой О, находящейся в другом времени значит сказать нечто, не имеющее определенного смысла, кроме условного, зависящего от выбора материальных осей. Но так как этот вопрос связан с теорией относительности, я не буду сейчас рассматривать его подробно и ограничусь определением точек в данный момент, игнорируя при этом трудности, связанные с определением одновременности.

В последующем я не подчеркиваю именно тот метод построения точек, который я применяю. Другие методы также возможны, и некоторые из них могут даже оказаться более предположительными. Важно отметить только то, что можно изобрести такие методы. В определении моментов мы использовали отношение «совпадения» во времени — отношение, которое имеет место между двумя событиями, когда (в обычном языке) имеется время, в течение которого оба существуют. В определении точек мы пользуемся отношением «совмещения» в пространстве, которое должно иметь место между двумя одновременными событиями, занимающими (в обычном языке) одну и ту же область пространства в целом или частично. Следует заметить, что события, в противоположность частям материи, не следует считать взаимонепроницаемыми. Непроницаемость материи есть свойство, которое тавтологически вытекает из её определения. «События», однако, определяются только как термины, не обладающие структурой и имеющие такие пространственные и временные отношения, которые принадлежат конечным объемам пространства и конечным периодам времени. Когда я говорю «такие, которые», я имею в виду «сходные в отношении логических свойств». Но «совпадение» само по себе не определяется логически; оно является эмпирически познаваемым отношением, имеющим в том построении, которое я защищаю, только наглядное определение.

В многообразии более одного измерения, посредством бинарного отношения «совмещения», мы ничего не можем построить такого, что обладало бы свойствами, требуемыми от «точек». В качестве простейшего примера возьмем фигуры на плоскости.

Три фигуры на плоскости — А, В и С — могут налегать друг на друга так, что каждая налегает на две остальные, и вместе с тем так, что нет области, общей для всех трех фигур. На приведенном рисунке круг А налегает на прямоугольник В и треугольник С, а прямоугольник В налегает на треугольник С, но при этом нет области, общей для А, В и С. Основанием нашей конструкции должно быть отношение не двух, а трех фигур. Мы будем говорить, что три площади являются «соточечными» (copunctual), когда имеется область, общая для всех трех фигур. (Это — объяснение, а не определение.)

Мы будем исходить из того, что фигуры, с которыми мы имеем дело, или являются кругами, или получаются из кругов благодаря растяжениям или сжатиям, при которых сохраняется овальность. В этом случае если даны три соточечные фигуры А, В и С и четвертая фигура D такая, что и Л, В, D и А, С, D, и В, С, D соточечны, то A, В, С и D все имеют общую область.

Мы теперь называем группу, состоящую из любого числа фигур, «соточечной», если каждая триада из этой группы будет соточечной. Соточечная группа фигур представляет собой «точку», если она не может быть расширена, не перестав быть соточечной, то есть если для любой фигуры X, не принадлежащей группе, в этой группе имеются по крайней мере две фигуры А и В, такие, что А, В и Х не являются соточечными.

Это определение применимо только в двух измерениях. В трех измерениях мы должны начинать с отношения соточечности между четырьмя пространственными фигурами, причем все эти фигуры должны быть или сферами, или такими овалоидами, которые получаются из сфер благодаря непрерывному растяжению в одних направлениях и сжатию в других. Тогда, как и перед этим, соточечная группа фигур является такой, в которой каждые четыре фигуры соточечны; соточечная группа представляет собой «точку», если она не может быть расширена, не перестав быть соточечной.

В n измерениях определения остаются одними и теми же, за исключением того, что первоначальное отношение соточечности должно относиться к л +1 фигурам.

«Точки» определяются как классы событий с помощью вышеприведенных методов и с молчаливым предположением, что каждое событие «занимает» более или менее овальную площадь.

«События» должны пониматься в этом обсуждении как неопределенный сырой материал, из которого должны быть получены геометрические определения. В другом контексте нам может понадобиться исследовать то, что понимается под «событиями», и мы сможем тогда продолжать наш анализ дальше, а сейчас мы рассматриваем многообразие «событий» с их пространственными и временными отношениями как эмпирические данные.

Способ, с помощью которого пространственный порядок вытекает из наших предположений, является несколько сложным. Однако здесь я ничего не буду говорить об этом, так как разбирал этот вопрос в книге «Анализ материи», где я дал также и гораздо более полный разбор определения «точек» (главы 28 и 29).

Кое-что следует сказать о метрических свойствах пространства. Астрономы в своих популярных книгах поражают нам прежде всего рассказами о том, как безмерно далеко находятся от нас многие туманности, а затем утверждениями, что вселенная в конце концов конечна, будучи трехмерным аналогом поверхности сферы. Но в своих менее популярных книгах они говорят, что измерение носит только условный характер и что мы могли бы, если бы захотели, принять такие условия, которые привели бы к тому, что самые удаленные из известных нам туманностей северного полушария оказались бы к нам ближе, чем туманности противоположного полушария. Если это так, то обширность вселенной является не фактом, а результатом условий. Я думаю, что это верно только отчасти, но выделить элемент условности в измерении это отнюдь не легкое дело. Прежде чем попытаться сделать это, следует кое-что сказать об измерении в его элементарных формах.

Измерение расстояния даже до удаленных туманностей строится на основе измерений расстояний на поверхности Земли, а наземные измерения начинаются с допущения, что некоторые тела могут рассматриваться как приблизительно жесткие (rigid). Если вы измеряете величину вашей комнаты, то вы исходите из того, что ваша измерительная линейка не становится заметно длиннее или короче в процессе измерения. Английская военно-топографическая съемка определяет большинство расстояний посредством триангуляции, но этот процесс требует, чтобы по крайней мере одно расстояние было измерено непосредственно. Действительно, основная линия, избранная на Солсберийской равнине, была тщательно измерена элементарным способом, каким мы измеряем величину нашей комнаты: цепь, которую можно принять по определению за единицу длины, повторно укладывалась на поверхности земли вдоль линии, которая была прямой, насколько это было возможно. Когда эта длина была определена непосредственно, остальное измерение производилось посредством измерения углов и соответствующих вычислений: диаметр Земли, расстояние до Солнца и Луны и даже расстояния до ближайших неподвижных звезд могут быть определены без какого-либо дальнейшего непосредственного измерения длин.

Но если этот процесс исследовать тщательно, то оказывается, что он полон трудностей. Допущение, что тело «жестко», не имеет определенного смысла, пока мы не установим метрики, позволяющей нам сравнить длины и углы в один момент времени с длинами и углами в другой момент времени, так как «жесткое» тело не изменяет ни своей формы, ни величины. Но тогда мы нуждаемся в определении «прямой линии», так как все наши результаты будут неверными, если основная линия на Солсберийской равнине и линии, употребляемые в процессе триангуляции, не прямые. Следовательно, оказывается, что измерение предполагает геометрию (позволяющую определить «прямую линию») и достаточные познания в физике, дающей основания для рассмотрения некоторых тел приблизительно жесткими и для сравнения расстояний, измеренных в один момент времени, с измеренными в другой момент. Связанные с этим затруднения трудно преодолимы, но прикрываются допущениями, принятыми в соответствии с обыденным здравым смыслом.

Обыденный здравый смысл допускает, грубо говоря, что тело является жестким, если оно выглядит жестким. Рыба угорь не выглядит жесткой, а стальной стержень выглядит таковым. С другой стороны, камешек на дне журчащего ручья может казаться извивающимся, как угорь, но с точки зрения обыденного здравого смысла этот камешек является тем не менее жестким, потому что осязание считается с этой точки зрения более надежным, чем зрение, а когда вы переходите ручей вброд босиком, то вы именно осязаете, что камешек жесткий. Рассуждая таким образом, следует сказать, что обыденный здравый смысл является как бы ньютонианцем: он убежден, что в каждый момент тело обладает внутренне присущей ему определенной формой и величиной, такой же или не такой, как его форма и величина в другой момент. Если пространство абсолютно, то это убеждение имеет какой-то смысл, но без абсолютного пространства оно сразу же теряет всякий смысл. Должно, однако, существовать такое истолкование физики, которое объясняло бы весьма значительные успехи, проистекающие из допущений обыденного здравого смысла.

Как и в измерении времени, здесь действуют три фактора: во-первых, допущение, доступное исправлению; во-вторых, физические законы, которые при этом допущении оказываются приблизительно верными; в-третьих, изменение допущения, делающее физические законы более точными. Если вы допустите, что стальной стержень, выглядящий зрительно и осязательно жестким, сохраняет свою длину неизменной, то вы найдете, что расстояние от Лондона до Эдинбурга, диаметр Земли и расстояние до Сириуса почти постоянны, но немного короче при теплой погоде, чем при холодной. Тогда окажется, что проще сказать, что ваш стальной стержень при нагревании расширяется, особенно когда вы найдете, что это позволяет вам рассматривать вышеупомянутые расстояния как почти постоянные, и, далее, сказать, что вы видите, как ртуть в термометре занимает больше пространства в теплую погоду. Вы, следовательно, допускаете, что жесткие по видимости тела расширяются от теплоты, и вы допускаете это для того, чтобы упростить формулировку физических законов.

Попробуем выяснить, что в этом процессе является условным и что оказывается физическим фактом. Физическим фактом является то, что если вы возьмете два стальных стержня одинаковой комнатной температуры и по видимости одинаковой длины и нагреете один из них на огне, а другой положите в снег, то, когда вы после сравните их, окажется, что тот, который был на огне, будет выглядеть несколько длиннее, чем тот, который был в снегу, но когда они оба снова будут иметь температуру вашей комнаты, эта разница исчезнет. Я здесь исхожу из допущения донаучных методов определения температуры: горячим или холодным телом считаю то, что горячо или холодно на осязание. В результате таких грубых донаучных наблюдений мы решаем, что термометр дает точное измерение того, что приблизительно измеряется нашими осязательными ощущениями тепла и холода; мы можем теперь в качестве физиков игнорировать эти

Скачать:PDFTXT

Человеческое познание его сферы и границы Бертран читать, Человеческое познание его сферы и границы Бертран читать бесплатно, Человеческое познание его сферы и границы Бертран читать онлайн