Скачать:PDFTXT
Человеческое познание его сферы и границы

«a имеет свойство f» знаком «fa». Но если о встречается в «fa» больше одного раза, то возникнет неясность. Например, допустим, что ‘fa» обозначает «о совершает самоубийство», то есть «a убивает a». Это есть значение выражения «x убивает x», которое является классом самоубийств; оно также есть значение выражения «о убивает х», которое является классом людей, которых убивает а;, оно также есть значение выражения «x убивает a», которое есть класс людей, которые убивают о. Таким образом, определяя вероятность fa, если «a» встречается в «fa» больше одного раза, мы должны указать, какие из его наступлений должны и какие не должны рассматриваться как значения переменной.

Окажется, что мы может интерпретировать все элементарные теоремы в согласии с вышеприведенным определением. Возьмем, например, предполагаемое Лапласом оправдание индукции. Имеется N+1 сумок, каждая из которых содержит N шаров. Из этих сумок r+1-я содержит г белых шаров и N — r черных шаров. Мы вытащили из одной сумки n шаров, причем все они оказались белыми.

Каков шанс

(a) что мы выбрали сумку с одними лишь белыми шарами?

(b) что следующий шар окажется тоже белым?

Лаплас говорит, что (a) есть (n+1)/(/V+1) и (b) есть (n +1)/(n+2). Иллюстрируем это несколькими числовыми примерами. Во-первых, допустим, что всего имеется 8 шаров, из которых вытащено 4, все белые. Каковы шансы (a), что мы выбрали сумку, содержащую только белые шары, и (b) что следующий вытащенный шар тоже окажется белым?

Пусть Pr представляет собой гипотезу, что мы выбрали сумку с r белыми шарами. Эти данные исключают р0, р1, р2, р3. Если мы имеем p4, то имеется только один случай, когда мы могли вытащить 4 белых, и остается 4 случая вытащить черный и ни одного — белый. Если мы имеем р5, то есть 5 случаев, когда мы могли бы вытащить 4 белых, и для каждого из них был 1 случай вытащить следующий белый и 3 — вытащить черный; таким образом, из р5 мы получаем 5 случаев, где следующий шар будет белым, и 15 случаев, где он будет черным. Если мы имеем P6, то есть 15 случаев выбора 4 белых, а когда они вытащены, остается 2 случая выбрать один белый и 2 случая выбрать черный; таким образом, из P6 мы имеем 30 случаев получения следующего белого и 30 случаев, когда следующий будет черным. Если мы имеем p7, то есть 35 случаев вытащить 4 белых, а после того, как они будут вытащены, останется 3 случая вытащить белый и одинвытащить черный; таким образом, мы получаем 105 случаев вытащить следующий белый и 35 — вытащить черный. Если мы имеем P8, то есть 70 случаев вытащить 4 белых, а когда они будут вытащены, то есть 4 случая вытащить следующий белый и ни одного — вытащить черный; таким образом, из P8 мы получаем 280 случаев вынуть пятый белый и ни одного — вынуть черный. Суммируя, мы имеем 5+30+105+280, то есть 420 случаев, когда пятый шар является белым, и 4+15+30+35, то есть 84 случая, когда пятый шар является черным. Следовательно, разница в пользу белого составляет отношение 420 к 84, то есть 5 к 1; это значит, что шанс, что пятый шар окажется белым, равен 5/6.

Шанс, что мы выбрали сумку, в которой все шары белые, есть отношение числа случаев получения 4 белых шаров из этой сумки ко всему числу случаев получения 4 белых шаров. Первых, как мы видели, 70; вторых 1+5+15+35+70, то есть 126. Следовательно, шанс равен 70/126, то есть 5/9.

Оба эти результата согласуются с формулой Лапласа. Возьмем еще один числовой пример: допустим, что имеется 10 шаров, из которых 5 было вынуто, причем они оказались белыми. Каков шанс р10, то есть того, что мы выбрали сумку с одними белыми шарами? И каков шанс, что следующий шар будет белым?

P5 возможно в 1 случае; если р5, то ни одного случая следующего белого, 5 случаев следующего черного;

P6 возможно в 6 случаях; если р6, то 1 случай следующего белого, 4 случая черного;

P7 возможно в 21 случае; если р7, то 2 случая следующего белого, 3 случая черного;

P8 возможно в 56 случаях; если P8, то 3 случая следующего белого, 2 случая черного;

P9 возможно в 126 случаях; если P9, то 4 случая следующего белого, 1 случай черного;

P10 возможно в 252 случаях; если P10, то 5 случаев следующего белого, 0 случаев черного.

Таким образом, шанс р10 равен 252/(1+6+21+56+126+252), то есть 252/462, то есть 6/11.

Случаи, когда следующий шар может быть белым, составляют 6+21 * 2+56 * 3+126 * 4+252 * 5, то есть 1980, а случаи, когда он может быть черным, составляют 5+4 * 6+3 * 21+2 * 56+126, то есть 330.

Следовательно, разница в пользу белого составляет отношение 1980 к 330, то есть 6 к 1, так что шанс получения следующего белого равен 6/7. Это тоже находится в согласии с формулой Лапласа.

Возьмем теперь закон больших чисел Бернулли. Мы можем иллюстрировать его следующим образом. Допустим, что мы бросаем монету n раз и пишем 1 всякий раз, кода выпадает ее лицевая сторона, и 2 — всякий раз, когда она выпадает оборотной стороной, образуя, таким образом число из n-го количества однозначных чисел. Предположим, что каждая возможная последовательность выпадает только один раз. Таким образом, если n = 2, то мы получим четыре числа: 11, 12, 21, 22; если n =3, то мы получим 8 чисел: 111, 112, 121, 122, 211, 212, 221, 222; если n=4, мы получим 16 чисел: 1111, 1112, 1121, 1122, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2221, 2222 и так далее

Беря последнее из вышеприведенного перечня, мы находим: 1 число со всеми единицами, 4 числа с тремя единицами и одной двойкой, 6 чисел с двумя единицами и двумя двойками, 4 числа с одной единицей и тремя двойками, t число со всеми двойками.

Эти числа — 1, 4, 6, 4, 1 — являются коэффициентами в разложении бинома (а + b)4. Легко доказать, что для n однозначных чисел соответствующие числа являются коэффициентами в разложении бинома (о + b)n. Теорема Бернулли сводится к тому, что если n является большим, то сумма коэффициентов около середины будет почти равна сумме всех коэффициентов (которая равна 2n), Таким образом, если мы возьмем все возможные последовательности выпадения лицевой и оборотной сторон в большом числе бросаний, то огромное большинство их будет иметь почти одинаковое число у обеих (то есть у лицевой и оборотной сторон); это большинство и приближение к полному равенству будет, кроме того, неопределенно увеличиваться по мере того, как будет увеличиваться число бросаний.

Хотя теорема Бернулли и является более общей и более точной, чем вышеприведенные положения с равно вероятными альтернативами, на все-таки должна интерпретироваться, согласно нашему настоящему определению «вероятности», способом, аналогичным вышеприведенному. Является фактом, что если мы составим все числа, которые состоят из 100 знаков, каждый из которых есть или 1, или 2, то около четверти из них будут иметь 49, или 50, или 51 знак, равный 1, почти половина будет иметь 48, или 49, или 50, или 51, или-52 знака, равных 1, более половины будет иметь от 47 до 53 знаков, равных 1, и около трех четвертей будет иметь от 46 до 54 знаков. По мере того как число знаков будет увеличиваться, будет возрастать и преобладание случаев, в которых единицы и двойки будут почти полностью уравновешиваться.

Вопрос, почему этот чисто логический факт должен рассматриваться как дающий нам хорошее основание ожидать, что, если мы бросим монету очень много раз, мы действительно получим приблизительно равное число выпадений ее лицевой и оборотной сторон, является совершенно другим вопросом, включающим в себя в дополнение к логическим законам законы природы. Я упоминаю об этом только для того, чтобы подчеркнуть тот факт, что я сейчас не рассматриваю этого.

Я хочу подчеркнуть то, что в вышеприведенной интерпретации нет ничего касающегося возможности и ничего, что по существу дела предполагает незнание. Здесь дается только исчисление членов класса В и определение того, какая их пропорция принадлежит также и к классу А.

Иногда утверждают, что мы нуждаемся в аксиоме равновероятности, например, в аксиоме, что выпадение лицевой и оборотной сторон монеты равновероятно. Если это значит, что в действительности они выпадают с приблизительно равной частотой, то это предположение не является необходимым для математической теории, которая как таковая не имеет дела с действительными событиями.

Рассмотрим теперь возможные применения определения конечной частоты к случаям вероятности, которые могут казаться стоящими вне ее.

Во-первых, при каких условиях можно распространить это определение на бесконечные совокупности? Поскольку мы определили вероятность как дробь, а дроби не имеют смысла, когда числитель и знаменатель бесконечны, постольку наше определение можно расширить только в том случае, когда имеются какие-то средства перейти к пределу. Это требует, чтобы все о, в отношении которых мы должны установить вероятность того, что они суть b, представляли бы собой последовательность, являющуюся на деле рядом (progression), так чтобы они были даны как а1, a2, a3, … an, где для каждого конечного целого числа n существовало бы соответствующее an, и наоборот. Мы можем тогда обозначить через «Pn» пропорцию всех а до an, включительно, которые принадлежат b. Если, по мере того, как n увеличивается, pn стремится к пределу, то мы можем определить этот предел как вероятность того, что а будет b. Этот предел зависит от порядка следования всех о и поэтому является пределом их как последовательности, а не как класса. Мы должны, однако, отличать случай, в котором значение Pn как бы колеблется около своего предела, от случая, в котором оно стремится к пределу только с одной стороны. Если мы многократно бросаем монету, то число выпадений лицевой стороны будет иногда больше половины всех бросаний, а иногда меньше; таким образом, pn как бы колеблется около предела 1/2. Но если мы возьмем пропорцию простых чисел до n (среди всех чисел меньших), то она стремится к пределу нуль только с одной стороны: для любого конечного n величина pn есть определенная положительная дробь, которая для больших значений n приблизительно равна 1/1п n. Однако 1/1n n стремится к нулю по мере того, как n бесконечно возрастает. Таким образом, пропорция простых чисел стремится к нулю, но мы не можем сказать, что «ни одно целое число не является простым»; мы можем сказать, что шанс того, что целое число будет простым числом, является бесконечно малым, но не

Скачать:PDFTXT

Человеческое познание его сферы и границы Бертран читать, Человеческое познание его сферы и границы Бертран читать бесплатно, Человеческое познание его сферы и границы Бертран читать онлайн