эти слова.
Вы можете сказать: «Тем не менее, ничто не поколеблет мою веру в то, что дважды два четыре». В значительной мере вы правы, за исключением пограничных случаев; только в пограничных случаях вы Усомнитесь в том, является ли какое-то конкретное животное собакой или какая-то конкретная длина – меньше метра. Два должно быть Два чего-либо, а утверждение «дважды два четыре» бесполезно, если оно ни к чему не применимо. Две собаки плюс две собаки – это определенно четыре собаки, но в некоторых случаях вы усомнитесь являются ли две из них собаками. Вы можете сказать: «Хорошо, в любом случае это четыре животных». Однако существуют микроорганизмы, относительно которых трудно сказать, являются ли они животными или растениями. «Хорошо, – скажете вы, – тогда это просто живые организмы». Однако существуют вещи, относительно которых трудно сказать, являются они живыми организмами или нет. Тогда вы вынуждены будете сказать: «Две сущности и две сущности – это четыре сущности». Когда вы скажете мне, что вы имеете в виду под термином «сущность», мы сможем принять это утверждение.
Таким образом, понятия, в целом, обладают определенной областью, к которой они применимы в полной мере, и определенной областью, к которой они точно неприменимы. Однако понятия, претендующие на точность, такие как «метр» и «секунда», несмотря на то, что они обладают широкой областью применения (в пределах приблизительной области), к которой они точно неприменимы, совершенно не обладают той областью, к которой они применимы в полной мере. Если они должны применяться в полной мере, то нужно пожертвовать претензией на точность.
Подведем итог нашего обсуждения: математика не обладает той точностью, на которую претендует, она так же приблизительна, как и все остальное знание. Тем не менее, это не имеет никакого значения с практической точки зрения, поскольку в любом случае все наше знание внешнего мира лишь приблизительно.
Я решил обсудить этот вопрос, поскольку многие люди считают, что математика претендует на знание высшего рода, и эта претензия – в тех, кто убежден, что она не оправданна, – рождает сопротивление, которое мешает их обучению математике и восприятию математического рассуждения. Абсолютная точность математики недостижима. Она существует – в той мере, в какой она существует, – лишь благодаря тому факту, что математическое знание на самом деле вербальное, а не эмпирическое, знание, и язык, с помощью которого это знание выражается, довольно сложен.
Но я еще не все сказал о точности. Мы не можем обладать точным знанием о мире, и это правда, но знаем, что, выражаясь математическим языком, результаты верны в той мере, в какой мы можем об этом судить. Иными словами, математики предлагают лучшую рабочую гипотезу для понимания мира. Научные гипотезы могут казаться более или менее ложными, но именно новые математические изобретения снабжают их необходимыми исправлениями. Ньютоновский закон тяжести считался истинным в течение двух с половиной веков и был затем исправлен Эйнштейном; однако универсум Эйнштейна был столь же математическим, что и универсум Ньютона. Квантовая теория разработала совершенно иную, чем классическая, физику атома, но также продолжала работать с математическими символами и уравнениями. Изобретенный математиками аппарат понятий и операций незаменим при объяснении многообразных явлений в мире, благодаря действию общих законов; единственные гипотезы, имеющие шанс на истинность в наиболее развитых науках, предлагаются математиками.
Таким образом, если вы хотите понять мир, насколько это возможно в теоретическом плане, то должны получить значительные познания в области математики. Если вы имеете практические интересы и хотите лишь действовать в мире – независимо от того, для своего блага или во благо человечества, – то можете, не вдаваясь в тонкости математики, достичь многого, опираясь на то, что сделали ваши предшественники. Однако общество, посвящающее себя лишь такого рода работе, будет в определенном смысле паразитировать на том, что было открыто в прошлом. Примером является история радио. Почти 100 лет назад Фарадей провел множество гениальных экспериментов по электромагнетизму, но, не будучи математиком, не смог предложить действительно общую, всестороннюю гипотезу, объясняющую результаты его работы. Затем появился Кларк Максвелл, который не был экспериментатором, но был первоклассным математиком. На основании экспериментов Фарадея он сделал вывод, что должны существовать электромагнитные волны, и свет должен состоять из такого рода волн, и частота этих волн должна восприниматься человеческим глазом. Для него это была чистой воды теория. Его работы принадлежат 70-м годам прошлого века. Лет двадцать спустя немецкий физик Герц, будучи и экспериментатором, и математиком, решил проверить теорию Максвелла на практике и изобрел аппарат, с помощью которого смог производить электромагнитные волны. Оказалось, что они распространяются со скоростью света и обладают всеми теми свойствами, которые им приписывал Максвелл. Последним был Маркони, который так преобразовал изобретение Герца, что его можно было использовать за пределами лаборатории, поскольку в радиоаппаратуре используются именно волны Герца. Эта история в целом блестяще иллюстрирует взаимодействие эксперимента и теории на котором и основывается развитие науки.
В конечном счете, математика приносит тем, кто может ее оценить, огромное удовольствие, против которого не сможет возразить ни один моралист. В манипулировании с символами есть такое же наслаждение, какое люди находят в шахматах, но его значение увеличивается тем, что является полезным, а не просто игрой. В смысле понимания естественных процессов это дает ощущение силы человеческого разума, а в работе лучших математиков присутствует чистая красота, показывающая, каких вершин может достичь человек, если он освободит себя от малодушия и жестокости, порабощения случайностями своего физического существования.