Сайт продается, подробности: whatsapp telegram
Скачать:TXTPDF
Математика, Философия и Йога. Франклин Меррелл-Вольф

сказать, что Сократ (отдельный элемент, обозначенный символом «X») – человек. Поскольку он входит в меньший круг, можно прийти к выводу о том, что Сократ смертен. Таков схематический способ изображения этого силлогизма [18]. В данном случае мы воспользовались дедуктивной логикой: спустились из обширной области в более узкую методом исключения. Такая форма логики является не очень творческой, она больше пригодна для целей критического рассмотрения, анализа и так далее.

В индуктивной логике – в том привычном смысле, в каком она применяется в науке, – законы выводятся исходя из ряда наблюдений. Например, увидев набор точек на плоскости, вы можете попытаться придумать некую гипотезу, которая объяснит закономерность или взаимосвязь между положениями этих точек. В одной лекции я говорил о примере поиска подобной закономерности в расположении пяти точек. Если вы наложите на этот закон ограничение и потребуете, чтобы он представлял собой уравнение второй степени, то найдете единственное решение, поскольку пять точек на плоскости однозначно определяют кривую второй степени. Но если вы не будете сковывать свое мышление такими ограничениями (то есть допустите, что закон может быть уравнением третьей, четвертой, пятой и любой другой степени), то через эти пять точек может пройти в буквальном смысле слова бесконечное число кривых.

Иначе говоря, существует бессчетное, потенциально бесконечное число возможных объяснений наших научных наблюдений – потенциально неисчислимое разнообразие. Мы не можем добиться однозначной, определенной истины. Именно по этой причине аксиоматическая наука имеет только прагматическую ценность. Она некоторое время помогает, но рано или поздно становится неверной. После обобщения Ньютона люди считали, что наконец-то постигли истину. Эта точка зрения сохранялась очень долго, но и она была опровергнута. Теории Ньютона не удалось объяснить некоторые измерения после того, как люди смогли провести их точнее. Сегодня более адекватными считаются идеи Эйнштейна, но завтра и они могут смениться новыми представлениями. Таким образом, аксиоматическая наука предлагает не окончательную, а прагматическую истину.

Математическая индукция представляет собой тот процесс, благодаря которому мы можем переходить от чего-то конкретного и единичного к бесконечности в буквальном смысле. Я попытаюсь показать вам простой пример. Рассмотрим сумму:

1 + 3 + 5 + 7+…

и так далее, без конца. Этот ряд представляет собой сумму нечетных чисел. Для обозначения номеров каждой промежуточной суммы этого ряда я буду использовать римские цифры – они отличаются от привычных и потребуются нам для поиска окончательной формулы.

Количество слагаемых: I II III IV… n n+1

Слагаемые: 1+ 3+ 5+ 7+…+ (n-1) + (2n+1) +…

Сумма слагаемых: 1 4 9 16… n2 (n+1)2

Обратите внимание, что первая сумма равна 1, сумма первого и второго членов-4, сумма первых трех слагаемых – 9, сумма первых четырех – 16. Заметили ли вы зависимость между этими суммами и теми числами, которые обозначают количество слагаемых? Во всех случаях суммы равны квадратам этих чисел – довольно неожиданный результат! Теперь вас осеняет мысль: быть может, такое правило выполняется на всем протяжении этого бесконечного ряда. Для того чтобы проверить все суммы, потребуется бесконечное время. Однако математик не скован таким требованием.

Смотрите, как он поступает. Сначала он допускает, что это правило выполняется для n слагаемых (при этом п означает любое целое положительное число), то есть сумма первых n членов ряда равна n2 – такое предположение возникло в результате того, что ему уже известно. Затем он задает себевопрос: «Будет ли это выполняться и далееБудет ли это утверждение справедливо для суммы (п+1) первых слагаемых, если известно, что оно выполняется для суммы n слагаемых? Получим ли мы (n+1)2 в результате очередного суммирования? Математик поступает просто: берет сумму п первых членов и говорит, что она равна n2. В каком виде можно представить n-ый член этого ряда? Заметим, что ряд можно записать в форме:

2*(1)-1, 2*(2)-1, 2*(3)-1, 2*(4)-1,…

и тогда n-ое по счету слагаемое будет иметь вид 2n – 1. Определим (n+1)-ое слагаемое, заменив n на (n+1). Получим:

2(n+1)- 1 = 2n+ 1.

Это легко проверить, так как нам известно, что каждое слагаемое ровно на 2 больше предшествующего слагаемого. Сложим это слагаемое с полученной ранее суммой n2 и посмотрим, будет ли новая сумма равна (n+1):

n2+(2n+1) = n2+2n+ 1

Те, кто помнит школьную математику, уже узнали эту формулу: записанное справа выражение равно

(n+1)2.

Иными словами, если сумма первых n членов ряда равна n2, то сумма первых (n+1) членов будет равна (n+1)2.

Таким образом, если это правило выполняется для какого-либо члена ряда, то оно будет справедливо и для следующего члена. Правильность закономерности для нескольких первых сумм была показана практическим методом, то есть прямыми вычислениями, но теперь нам ясно, что она сохранится на всей бесконечной протяженности этой последовательности. Такой подход постоянно используется в математических доказательствах.

Какое отношение это имеет к нашему разуму? Только что мы убедились, что несколько первых слагаемых позволяют нам с полной уверенностью судить о том, что произойдет с сотым, тысячным слагаемым, со слагаемым под номером гугол – с любым из всей бесконечности слагаемых. Эти факты известны нам с неоспоримой точностью. И это показывает, что разум не является чем-то конечным. Мне хотелось дать вам представление именно об этом, и не с точки зрения Осознания, а под неким иным углом, с позиции мышления, умозрительного понимания. У нас есть основания считать, что подлинный разум не есть что-то ограниченное, что это не просто заключенный в череп мозг, а нечто такое, что в определенном направлении простирается безгранично. Математик пользуется этой силой, чтобы строить свои доказательства. Благодаря приведенным выше рассуждениям он определяет, чему будет равна сумма произвольного количества слагаемых, с той же уверенностью, с какой складывает первые несколько членов этого ряда. Это отчасти приоткрывает тайну подлинного разума: в действительности, мы вовсе не ограниченные создания, мы так же велики, как Парабрахман. Я уже говорил о том, что, вполне возможно, существуют еще более глубокие Источники, чем те, которые представлены в идее Парабрахмана. Некоторые люди поднялись на огромные высоты и принесли нам эту идею, но что запрещает нам со временем подняться еще выше и проникнуть, как говорит Ауробиндо, в неведомые, беспредельные Бесконечности?

Лекция 6

Вчера мы были участниками необычного проявления того, что можно назвать «Полевым Сознанием». Это понятие пришло из физики поля и кажется мне очень удачным. Я еще называю его «Сознанием-без-объекта». Оно присутствовало почти все – а может быть и все – время и ощущалось с необычайной силой. Я видел его воздействие на большую часть слушателей. Оно вызывает такие состояния, как легкий транс, примешивающийся к обычному сознанию. Это было Присутствие самого Нумена – не вторичных проявлений, не эманации Нумена, а именно его Присутствие. Обладающие иным зрением могли воспринимать Присутствие Нумена как Лучезарное Существо в человекоподобном облике, но в том, что касается Нумена, такие внешние проявления несущественны – вспомним слова Шри Ауробиндо о том, что Божественное предстает перед человеком в той форме, в какой он готов Его воспринять. Так или иначе, форма – не главное. Важнейшим является то сознание, которое мы называем «Полевым Сознанием»: оно допускает беспредельное расширение, так как не ограничено объективным пространством. При соответствующем подъеме сознания Великие Сущности во всей полноте их бытия могут повстречаться сейчас, здесь, где бы вы ни были. Это значит, что Будда является не неким человеком, скончавшимся двадцать пять веков назад, но живым, находящимся всюду Присутствием, которое можно Осознать путем слияния сознаний. Сущностность одновременно является и личной, и всеобщей. Если вы уловили содержание тех символов, которые я заимствовал из математики бесконечных чисел, то уже владеете определенными средствами, позволяющими понять этот факт. Впрочем, достичь хотя бы слабого ощущения самого Нумена намного важнее, чем обрести все знания мира. То, что мы делаем с нашими понятиями, похоже на игру вторичного сознания в сфере Полевого Сознания: оба сознания становятся взаимосвязанными, и основная задача такой игры понятиями заключается в том, чтобы вызвать у как можно большего числа восприимчивых душ непосредственное переживание Полевого Сознания. Я заметил, что в прошлый вечер многие оказались достаточно чувствительными. Я видел слезы на глазах нескольких слушателей, хотя не говорил ничего печального.

Чтобы понять смысл этого, вновь обратимся к Ауробиндо. В его системе понятий существует нечто именуемое «Психической Сущностью». Этот термин не следует использовать в иных возможных значениях. Ауробиндо подразумевал под ним нечто строго определенное. Он называл Психической Сущностью ту частицу Божественного, которая пребывает в процессе развития и расположена в центре того, что кроется в глубине души каждого человека; обычно она тщательно скрыта и не может оказать большого влияния на жизнь и мысли личности. Величайшим устремлением Психической Сущности является достижение Божественного на уровне Полевого Сознания; и никогда, кроме, возможно, очень редких случаев, не бывает так, чтобы ее проявление после долгого заточения не вызвало у человека слез. Это не относится к самым необходимым для жизни чувствам. Жизненно важные чувства могут оказаться препятствиями, но ощущение Психической Сущности – одно из самых драгоценных переживаний. И не стыдитесь этих слез.

Итак, те понятия, которыми мы пользуемся, можно считать в достаточной мере похожими на игрушки, и сейчас мы начнем игры с ними. Сегодня я хочу рассказать вам о содержании одного из первых осознаний, которое было у меня в конце июля или в начале августа 1936 года. Это подготовит вас к тому, что я скажу в этот последний вечер, и послужит очень важной вехой на дальнейшем Пути. В то время я выполнял кое-какую работу на ручье Эльдорадо, притоке северного рукава Американ-ривер в округе Мазер-Лоуд штата Калифорния. Я остался в полном одиночестве, мне предстояло пробыть одному в течение нескольких дней, и потому я отбросил всякие заблаговременные планы и решил жить по своим спонтанным побуждениям. У меня была с собой только одна книга, «Система веданты»; я ел, когда хотел, спал, когда появлялось желание, работал по вдохновению и читал, когда испытывал к этому интерес. Я был один, и случись со мной какая-либо неприятность, помощь пришла бы лишь несколько дней спустя. Складывались самые благоприятные условия для ощущения Присутствия, ведь в тех случаях, когда ваше благополучие начинает зависеть только от Него и вы теряете обычную власть над обстоятельствами, это Присутствие становится ближе. Полное одиночество таит в себе огромные возможности для того, кто ищет Путь. Помнится, однажды я стоял на берегу ручья, подняв взор к уходящим в небо вершинам гор (насколько помню, повернувшись лицом к северу), и внезапно меня осенила мысль о том, что наши поиски Реального обращены в неверном направлении. Обычно мы ищем Реальное в содержании своего восприятия мира, доступного органам чувств,

Скачать:TXTPDF

Математика, Философия и . Франклин Меррелл-Вольф Йога читать, Математика, Философия и . Франклин Меррелл-Вольф Йога читать бесплатно, Математика, Философия и . Франклин Меррелл-Вольф Йога читать онлайн