Сайт продается, подробности: whatsapp telegram
Скачать:PDFTXT
Священная наука чисел. С. Ю. Ключников

которых мышление не обходится и которые ведут к истине.

Платону принадлежит также и самая четкая диалектика числа, с которой в описательном виде мы встречались еще в ранней классике. У Платона она дается сознательно — как чисто категориальная диалектика. Именно, всякое число занимает среднее место между неделимой единицей и бесконечностью единиц, или, как он говорит, между пределом и беспредельным.»

Аристотель говорит о близкой ему теории числа, принятой пифагорейцами:

«…У них, по-видимому, число принимается за начало и в качестве материи для вещей, и в качестве их состояний и свойств, а элементами числа они считают чёт и нечет, из коих первый является неопределенным, а второй определенным; единое состоит у них из того и другого, — оно является и четным, и нечетным, число (образуется) из единого, а (различные) числа, как было сказано, это — вся вселенная».

Секст Эмпирик обращал внимание на связь, существующую между структурами, заключенными в числе, и структурами разума:

«И как свет, — по словам Посидония в толковании платоновского «Тимея», — постигается световидным зрением, а звук — воздуховидным слухом, так и универсальная природа должна постигаться родственным ей разумом. Началом же универсальной субстанции явилось число. Поэтому и разум в качестве судьи всего, будучи причастен его могуществу, сам может быть назван числом.»

Плотин рассматривал числа как «активную эманацию первоединого» (Лосев). Его идеи были развиты Ямблихом, в своем труде «Теологумены» давшим подробное описание механизма рождения одного числа из другого, и Проклом, давшим и онтологическую и космологическую иерархию чисел и предлагавшим видеть в числе живую божественную сущность.

Позднее к миру числа обращались множество мыслителей — Св. Иероним, Скотт Эригена, Рене Декарт, Николай Кузанский, Джордано Бруно, Иоганн Кеплер, Лейбниц, Спиноза, Новалис. Не меньший интерес к числам проявлял и Восток. Флоренский писал по этому поводу: «Числовые спекуляции с громадными числами в законах Ману, все космологические идеи, легенда о Будде, побивающем в счете мудрецов, и другие факты в том же духе напитаны идеей потенциальной бесконечности». Яркой иллюстрацией этой мысли служит описание буддийской доктрины чисел, сделанное Хрисанфом в его труде «Религии древнего мира»:

«Соединение тысячи миров желания с тысячью миров переходных от первых — образует у буддистов так называемый малый хилиокозм, или малое тысячное счисление миров. Третья ступень мира форм обнимает собой тысячу миров второй ступени и тысячу малых хилиокозмов, следовательно, — миллион земель, солнцев, словоммиллион миров желания с миллионом миров переходных. Четвертая ступень обнимает тысячу миров, каждый с тысячью миллионов миров первой ступени и миллионом второй. Это — великий хилиокозм. За этими мирами следует еще высший, небесный «мир бесформенности», со своими четырьмя небесами, т. е. мир, в котором нет и формы бытия, никакого признака существования. Но и этим не ограничиваются буддисты в своем стремлении увеличить число миров. Великий хилиокозм. состоящий из тысячи миров, в свою очередь дробится на множество таких же хилиокозмов. Тысяча таких великих хилиокозмов, по воззрению буддистов, составляют только ту систему мира, на которую простирается влияние Будды и где слышится его слово. Все это не больше, как точка в безграничной вселенной, капля в море… Для обозначения числа миров пишется линия цифр в 44 тысячи футов длины, состоящая из 4 456 448 нулей.»

О числовом символизме немало говорилось и в индуистской традиции, а также в философии санхья.

Виды чисел: наука и эзотеризм

Чтобы глубже понять сакральную природу числа полезно на мгновение оторваться от чисто эзотерического подхода и посмотреть как он сочетается с представлениями обычной науки.

Энциклопедический словарь пишет о числе следующее:

«Число, одно из основных понятий математики; зародилось в глубокой древности и постепенно расширялось и обобщалось. В связи со счетом отдельных предметов возникло понятие о целых положительных (натуральных) числах, а затемидея о безграничности натурального ряда чисел: 1, 2, 3, 4… Задачи измерения длин, площадей, а также выделение долей именованных величин привели к понятию рационального (дробного) числа. Понятие об отрицательном числе возникло у индийцев в VI–XI вв. Потребность в точном выражении отношений величин (например, отношение диагонали квадрата к его стороне) привело к введению иррациональных чисел, которые выражаются через рациональные числа лишь приближенно; рациональные и иррациональные числа составляют совокупность действительных чисел. Окончательное развитие теория действительных чисел получила лишь во второй половине XIX века в связи с потребностями математического анализа. В связи с решением квадратных и кубических уравнений в XVI веке были введены комплексные числа».

Математика подразделяет числа на несколько групп или разновидностей, каждая из которых может быть рассмотрена с обычной, а может с метафизической точки зрения.

Числа действительные, представляющие собой объединение множества рациональных и множества иррациональных чисел. Любое действительное число в принципе может быть изображено на координатной прямой так, что каждое действительное число и каждая точка на этой прямой взаимно соответствуют друг другу. Действительным может быть любое либо положительное, либо отрицательное число, или нуль. С метафизической точки зрения данная группа чисел соответствует материальному вещественному плану бытия и является знаком количества. С помощью действительных чисел выражаются измерения всех физических величин.

Числа рациональные, могущие быть представленными в виде бесконечной десятичной дроби. Они имеют вид m/n, где т и п целые числа и и не равно 0. Каждая бесконечная десятичная дробь является рациональным числом. Сумма, разность, произведение и частное рациональных чисел также считается рациональным. К рациональным числам относятся и целые, и дробные, и положительные, и отрицательные, и даже нуль. С метафизической точки зрения рациональные числа относятся к тем величинам, которые могут быть измерены с определенностью и точностью.

Числа иррациональные относятся к группе действительных чисел, которые можно выразить в форме бесконечной десятичной непериодической дроби. Они не могут быть точно выраженными дробью m/n, где т и п- целые числа. Примерами таких иррациональных чисел являются числа корень из 2; 0,1010010001; lg2; cos20±;…. С метафизической точки зрения иррациональные числа относятся к области тех неуловимых явлений тонкого мира, которые не могут быть измерены с абсолютной точностью.

Действительные числа считаются разновидностью комплексных чисел, к которым относятся числа вида x+iy, где х и у — действительные числа, a i — так называемая мнимая единица (число, квадрат которого равен -1); х называется действительной частью, а у мнимой частью комплексных чисел. Комплексные числа, не являющиеся действительными (у<>0), иногда называют мнимыми числами, при х=0 комплексные числа называют чисто мнимыми. Иначе говоря, мнимые числа — это те комплексные числа, у которых равна нулю действительная часть и которые обозначаются z=bi. С метафизической точки зрения комплексные числа являются такими величинами, которые несут в себе сакральный план.

Числа подразделяются также на положительные, к которым относятся действительные числа больше нуля и отрицательные числа, противоположные положительным, меньше нежели ноль. С метафизической точки зрения все положительные числа относятся к физическому миру, а отрицательные — к тонкому плану бытия, то есть к астрально-ментальной области.

Однако выше речь шла лишь о внешней, лишенной сакральности чисто количественной природе числа. Однако есть и сугубо внутренний сакральный аспект числа, неизвестный современной математике и предопределяющий характер проявления чисел. Об этом хорошо говорит X.

Э. Керлот:

«Числа в символизме — это не просто выражение количества, а идеи — силы, каждая со своим особым характером. Числа в современном понимании являются только внешней оболочкой. Все числа происходят от единицы (которая эквивалентна мистической, невыявленной и не имеющей размера точке). Далее число, возникшее из единицы, все глубже погружается в материю, в усложняющиеся процессы, в «мир». Первые десять цифр в греческой системе (или двенадцать в восточной традиции) имеют отношение к духу: они — в сущности, архетипы и символы. Остальные — это продукт комбинации этих основных чисел. Древние греки очень интересовались символикой чисел. Например, Пифагор отмечал, что «все расположено в соответствии с числами». Платон рассматривал число как сущность гармонии, а гармонию как основу космоса и человека, утверждая, что ритмы гармонии «того же рода, что и периодические колебания нашей души». Философия чисел далее развивалась иудеями, гностиками и каббалистами, захватывая также алхимиков. Те же базовые универсальные понятия обнаруживаем в восточном мышлении — например, у Лао-Цзы: «Одно рождает два, два рождает три, а из тройки приходит одно» — новое единство или новый порядок — «как четыре». Современная символическая логика и теория групп возвращаются к идее количественного измерения как основы качественного. Пире полагал, что законы природы и человеческого духа базируются на общих принципах и могут быть расположены вдоль одних и тех же линий».

Действительные числа подразделяются также на алгебраические и неалгебраические числа. Алгебраическим считается число, удовлетворяющее алгебраическому уравнению с целыми коэффициентами. К таким числам относятся числа: корень из 2; корень из З;…

Неалгебраические или трансцендентные числа — это числа, не удовлетворяющие никакому алгебраическому уравнению с целыми коэффициентами. Трансцендентные числа относятся к группе иррациональных чисел, хотя не всегда иррациональные числа относятся к трансцендентным. Число а^b считается трансцендентным, если числа а и в являются алгебраическими числами, но при этом а<>0; а<>1 и в — нерациональное число. Трансцендентными числами считаются синусы многих рациональных величин, а также десятичные логарифмы целых чисел, не изображаемые единицей с нулями. Наиболее известными примерами трансцендентных чисел являются числа s (приближенное значение которого равно 2,718281) и PI (приближенное значение которого равно 3,1415296…)

П. Д. Успенский подразделяет математику как науку о числах на два вида:

а) математика конечных и постоянных величин, представляющая собой искусственную дисциплину, созданную для решения конкретных задач на условных данных;

б) математика бесконечных и переменных величин, представляющая собой более точное знание о реальном мире. Примерами математики второго типа, нарушающей искусственные аксиомы математики первого типа являются так называемые «трансфинитные числа», лежащие за бесконечностью.

Однозначные числа

Число 0

Строго говоря с метафизической точки зрения ноль не является числом и не относится к миру чисел. Ноль есть источник всех чисел, понимаемых как отдельные от единого основания силы, принадлежащий к иному неделимому измерению. Метафизический ноль содержит в себе все числа как потенциальную возможность части отделиться от целого. В системе арканологии 0 соответствует двадцать первому Аркану, который именно поэтому имеет второе названиеАркан нулевой и который содержит в себе все девять первых Арканов. Метафизический ноль символизирует собой Абсолют, соединяющий в себе Дух и Материю. Такой ноль представляет собой всеобъемлющий круг с бесконечным радиусом и окружностью. Вспомним одно из определений Бога, данное Блезом Паскалем: «Бог есть круг, центр которого везде, а окружность нигде». Абсолютный божественный статус метафизического нуля проявляется и в его взаимоотношениях с другими числами — если его присоединить к другим числам справа, он увеличивает число на один порядокдесять, если же умножать или делить на ноль, то он растворяет любое число до полного уничтожения. В этом проявляется верховная, управляющая функция, как символ

Скачать:PDFTXT

Священная наука чисел. С. Ю. Ключников Йога читать, Священная наука чисел. С. Ю. Ключников Йога читать бесплатно, Священная наука чисел. С. Ю. Ключников Йога читать онлайн